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For the past three decades, the ring resonator has been widely used in meas-
urements, filters, oscillators, mixers, couplers, power dividers/combiners, anten-
nas, frequency selective surfaces, and so forth. Recently, many new analyses,
models, and applications of the ring resonators have been reported. To meet
the needs for students and engineers, the first edition of the book has been
updated by adding the latest material for ring circuits and applications. Also,
all of the attractive features of the first edition have remained in the second
edition. The objectives of the book are to introduce the analyses and models
of the ring resonators and to apply them to the applications of filters, anten-
nas, oscillators, couplers, and so on.

The revised book covers ring resonators built in various transmission lines
such as microstrip, slotline, coplanar waveguide, and waveguide. Introduction
on analysis, modeling, coupling methods, and perturbation methods is
included. In the theory chapter, a new transmission-line analysis pointing out
a literature error of the one-port ring circuit is added and can be used to
analyze any shapes of the microstrip ring resonator. Moreover, using the same
analyses, the ring resonator can be represented in terms of a lumped-element
G, L, C circuit. After these theories and analyses, the updated applications 
of ring circuits in filters, couplers, antennas, oscillators, and tunable ring 
resonators are described. Especially, there is an abundance of new applica-
tions in bandpass and bandstop filters. These applications are supported by
real circuit demonstrations. Extensive additions are given in the filter and
coupler design and applications.

The book is based on the dissertations/theses and many papers published
by graduate students: Lung-Hwa Hsieh, Tae-Yeoul Yun, Hooman Tehrani,
Chien-Hsun Ho, T. Scott Martin, Ganesh K. Goplakrishnan, Julio A. Navarro,
Richard E. Miller, James L. Klein, James M. Carroll, and Zhengping Ding.
Dr. Cheng-Cheh Yu, Chun-Lei Wang, Lu Fan and F. Wang, Visiting Scholars
or Research Associates of the Electromagnetics and Microwave Laboratory,
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xi



Texas A&M University, have also contributed to this research. The additional
materials are mainly based on the recent publications by Lung-Hwa Hsieh,
Tae-Yeooul Yun, Hooman Tehrani, and Cheng-Cheh Yu. The book will also
included many recent publications by others. Finally, we would like to express
thanks to our family for their encouragement and support.

Kai Chang
Lung-Hwa Hsieh

College Station, Texas
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CHAPTER ONE

Introduction

1.1 BACKGROUND AND APPLICATIONS

The microstrip ring resonator was first proposed by P. Troughton in 1969 
for the measurements of the phase velocity and dispersive characteristics of 
a microstrip line. In the first 10 years most applications were concentrated 
on the measurements of characteristics of discontinuities of microstrip lines.
Sophisticated field analyses were developed to give accurate modeling and
prediction of a ring resonator. In the 1980s, applications using ring circuits as
antennas, and frequency-selective surfaces emerged. Microwave circuits using
rings for filters, oscillators, mixers, baluns, and couplers were also reported.
Some unique properties and excellent performances have been demonstrated
using ring circuits built in coplanar waveguides and slotlines. The integration
with various solid-state devices was also realized to perform tuning, switching,
amplification, oscillation, and optoelectronic functions.

The ring resonator is a simple circuit. The structure would only support
waves that have an integral multiple of the guided wavelength equal to the
mean circumference. The circuit is simple and easy to build. For such a simple
circuit, however, many more complicated circuits can be created by cutting a
slit, adding a notch, cascading two or more rings, implementing some solid-
state devices, integrating with multiple input and output lines, and so on.These
circuits give various applications. It is believed that the variations and appli-
cations of ring circuits have not yet been exhausted and many new circuits will
certainly come out in the future.

1

Microwave Ring Circuits and Related Structures, Second Edition,
by Kai Chang and Lung-Hwa Hsieh
ISBN 0-471-44474-X Copyright © 2004 John Wiley & Sons, Inc.



2 INTRODUCTION

FIGURE 1.1 Various transmission lines and waveguides.
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1.2 TRANSMISSION LINES AND WAVEGUIDES

Many transmission lines and waveguides have been used for microwave and
millimeter-wave frequencies. Figure 1.1 shows some of these lines and Table 1.1
summarizes their properties. Among them, the rectangular waveguide, coaxial
line, and microstrip line are the most commonly used. Coaxial line has no cutoff
frequency, can be made flexible, and can operate from dc to microwave or 
millimeter-wave frequencies. Rectangular waveguide has a cutoff frequency
and low insertion loss, but it is bulky and requires precision machining.
Microstrip line is the most commonly used in microwave integrated circuits
(MIC) and monolithic microwave integrated circuits (MMIC). It has many
advantages, which include low cost, small size, no critical machining, no cutoff
frequency, ease of active device integration, use of pbotolithographic method
for circuit production, good repeatability and reproducibility, and ease of mass
production. In addition,coplanar waveguide and slotline can be the alternatives
to microstrip line for some applications due to their uniplanar nature. In
microstrip, the stripline and ground plane are located on opposite sides of the
substrate. A hole is needed to be drilled for grounding or mounting solid-state
devices in shunt. In the uniplanar circuits such as coplanar waveguide and 
slotline, the ground plane and circuit are located on the same side of the 
substrate, avoiding any circuit drilling or via holes.

Ring circuits can be built on all these transmission lines and waveguides.
The selection of transmission lines and waveguides depends on applications
and operating frequency ranges. Most ring circuits realized so far are in
microstrip line, rectangular waveguide, coplanar waveguide, and stotline.

1.3 ORGANIZATION OF THE BOOK

This book is organized into 12 chapters. Chapters 2 and 3 give some general
descriptions of a simple model,field analyses,a transmission-line model,modes,
perturbation methods, and coupling methods of ring resonators. Chapters 4 and
5 discuss how electronically tunable and switchable ring resonators are made by
incorporating varactor and PIN diodes into the ring circuits. Chapters 6, 7, 8, 9,
and 10 present the applications of ring resonators to microwave measurements,
filters, couplers, and magic-Ts. Chapter 11 gives a brief discussion of ring 
antennas, frequency selective surfaces, and active antennas. The last chapter
(Chapter 12) summarizes applications for ring circuits in mixers, oscillators,
optoelectronics, and metamaterials.

4 INTRODUCTION



CHAPTER TWO

Analysis and Modeling of 
Ring Resonators
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2.1 INTRODUCTION

This chapter gives a brief review of the methods used to analyze and model a
ring resonator. The major goal of these analyses is to determine the resonant
frequencies of various modes. Field analyses generally give accurate and rig-
orous results, but they are complicated and difficult to use. Circuit analyses are
simple and can model the ring circuits with variations and discontinuities.

The field analysis “magnetic-wall model” for microstrip ring resonators was
first introduced in 1971 by Wolff and Knoppik [1]. In 1976, Owens improved
the magnetic-wall model [2].A rigorous solution was presented by Pintzos and
Pregla in 1978 based on the stationary principle [3]. Wu and Rosenbaum
obtained the mode chart for the fields in the magnetic-wall model [4]. Sharma
and Bhat [5] carried out a numerical solution using the spectral domain
method. Wolff and Tripathi used perturbation analysis to design the open- and
closed-ring microstrip resonators [6, 7]. So far, only the annular ring resonator
has the field theory derivation for its frequency modes. For the square or
meander ring resonators, it is difficult to use the magnetic-wall model to obtain
the frequency modes of these ring resonators because of their complex bound-
ary conditions. Also, the magnetic-wall model does not explain the dual-mode
behavior very well, especially for ring resonators with complex boundary 
conditions.

The field analyses based on electromagnetic field theory are complicated and
difficult to implement in a computer-aided-design (CAD) environment. Chang
et al. [8] first proposed a straightforward but reasonably accurate transmission-



line method that can include gap discontinuities and devices mounted along the
ring. Gopalakrishnan and Chang [9] further improved the method with a dis-
tributed transmission-line method that included factors affecting resonances
such as the microstrip dispersion, the curvature of the resonator, and various
perturbations. The distributed transmission-line method can easily accommo-
date many solid-state devices, notches, gaps and various discontinuities along
the circumference of the ring structure. Recently, Hsieh and Chang [10] used a
simple transmission-line model unaffected by boundary conditions to calculate
the frequency modes of ring resonators of any general shape such as annular,
square, or meander. Moreover, it corrects an error in literature concerning the
frequency modes of the one-port ring resonator [11]. Also, it can be used to
describe the dual-mode behavior of the ring resonator that the magnetic-wall
model cannot address well, especially for a ring resonator with complicated
boundary conditions. In addition, they used the transmission-line model to
extract the equivalent lumped element circuits for the closed- and open-loop
ring resonators [12]. The unloaded Qs of the ring resonators can be calculated
from the equivalent lumped elements G, L, and C. These simple expressions
introduce an easy method for analyzing ring resonators in filters and provide,
for the first time, a means of predicting their unloaded Q.

2.2 SIMPLE MODEL

The ring resonator is merely a transmission line formed in a closed loop. The
basic circuit consists of the feed lines, coupling gaps, and the resonator. Figure
2.1 shows one possible circuit arrangement. Power is coupled into and out of
the resonator through feed lines and coupling gaps. If the distance between
the feed lines and the resonator is large, then the coupling gaps do not 
affect the resonant frequencies of the ring. This type of coupling is referred to
in the literature as “loose coupling.” Loose coupling is a manifestation of the

6 ANALYSIS AND MODELING OF RING RESONATORS

FIGURE 2.1 The microstrip ring resonator.



negligibly small capacitance of the coupling gap. If the feed lines are moved
closer to the resonator, however, the coupling becomes tight and the gap
capacitances become appreciable. This causes the resonant frequencies of the
circuit to deviate from the intrinsic resonant frequencies of the ring. Hence,
to accurately model the ring resonator, the capacitances of the coupling 
gaps should be considered. The effects of the coupling gaps are discussed in
Chapter 3.

When the mean circumference of the ring resonator is equal to an integral
multiple of a guided wavelength, resonance is established. This may be
expressed as

2pr = nlg, for n = 1, 2, 3, . . . (2.1)

where r is the mean radius of the ring that equals the average of the outer and 
inner radii, lg is the guided wavelength, and n is the mode number. This rela-
tion is valid for the loose coupling case, as it does not take into account the
coupling gap effects. From this equation, the resonant frequencies for differ-
ent modes can be calculated since lg is frequency dependent. For the first
mode, the maxima of field occur at the coupling gap locations, and nulls occur
90° from the coupling gap locations.

2.3 FIELD ANALYSES

Field analyses based on electromagnetic field theory have been reported in
the literature [1–7]. This section briefly summarizes some of these methods
described in [13].

2.3.1 Magnetic-Wall Model

One of the drawbacks of using the ring resonator is the effect of curva-
ture. The effect of curvature cannot be explained by the straight-line 
approximation

2pr = nlg (2.2)

To quantify the effects of curvature on the resonant frequency, Wolff and
Knoppik [1] made some preliminary tests. They found that the influence of
curvature becomes large if substrate materials with small relative permittivi-
ties and lines with small impedances are used. Under these conditions the
widths of the lines become large and a mean radius is not well-defined. If small
rings are used, then the effects become even more dramatic because of the
increased curvature.

FIELD ANALYSES 7



They concluded that a new theory that takes the curvature of the ring into
account was needed. At the time there was no exact theory for the resonator
for the dispersive effects on a microstrip line. They therefore assumed a mag-
netic-wall model for the resonator and used a frequency-dependent eeff to cal-
culate the resonant frequencies.

The magnetic-wall model considered the ring as a cavity resonator with
electric walls on the top and bottom and magnetic walls on the sides as shown
in Figure 2.2. The electromagnetic fields are considered to be confined to the
dielectric volume between the perfectly conducting ground plane and the ring
conductor. It is assumed that there is no z-dependency (∂/∂z = 0) and that the
fields are transverse magnetic (TM) to z direction. A solution of Maxwell’s
equations in cylindrical coordinates is

(2.3)

(2.4)

(2.5)

where A and B are constants, k is the wave number, w is the angular frequency,
Jn is a Bessel function of the first kind of order n, and Nn is a Bessel function

H
k

j
AJ kr BN kr nn nf wm

f= ¢ + ¢{ }
0

( ) ( ) cos( )

H
n

j r
AJ kr BN kr nr n n= +{ }

wm
f

0
( ) ( ) sin( )

E AJ kr BN kr nz n n= +{ }( ) ( ) cos( )f
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FIGURE 2.2 Magnetic-wall model of the ring resonator.



of the second kind and order n. J¢n and N¢n are the derivatives of the Bessel
functions with respect to the argument (kr).

The boundary conditions to be applied are

Hf = 0 at r = r0

Hf = 0 at r = ri

were r0 and ri are the outer and inner radii of the ring, respectively. Applica-
tion of the boundary condition leads to the eigenvalue equation

(2.6)

where

(2.7)

Given r0 and ri, then Equation (2.6) can be solved for k. By using (2.7) the res-
onant frequency can be found.

The use of the magnetic-wall model eigenequation eliminates the error due
to the mean radius approximation and includes the effect of curvature of the
microstrip line. By using this analysis Wolff and Knoppik compared experi-
mental and theoretical results in calculating the resonant frequency of the ring
resonator. They achieved increased accuracy over Equation (2.2). Any errors
that still remained were attributed to the fringing edge effects of the microstrip
line.

2.3.2 Degenerate Modes of the Resonator

Using the magnetic-wall model it can be shown that the microstrip ring res-
onator actually supports two degenerate modes [14]. Degenerate modes in
microwave cavity resonators are modes that coexist independently of each
other. In mathematical terms this means that the modes are orthogonal to each
other. One example of degeneracy is a circularly standing wave.This is the sum
of two linearly polarized waves that are orthogonal and exist independently
of each other.

Recall that the solution to the fields of the magnetic-wall model must satisfy
the Maxwell’s equations and boundary conditions. One proposed solution 
was given in Equations (2.3)–(2.5). The other set of solutions also satisfies the
boundary conditions

(2.8)

(2.9)H
n

j r
AJ kr BN kr nr n n= - +{ }

wm
f

0
( ) ( ) cos( )

E AJ kr BN kr nz n n= +{ }( ) ( ) sin( )f

k r= w e e m0 0

¢ ¢ - ¢ ¢ =J kr N kr J kr N krn n i n i n( ) ( ) ( ) ( )0 0 0
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(2.10)

The only difference between the field components of Equations (2.8)–(2.10)
and (2.2)–(2.5) is that cosine as well as sine functions are solutions to the field
dependence in the azimuthal direction, f. Because sine and cosine functions
are orthogonal functions, the solutions, (2.5) and (2.10), are also orthogonal.
Both sets of solutions also have the same eigenvalue equation, (2.6). This
means that two degenerate modes can exist at the resonance frequency.
Because the modes are orthogonal, there is no coupling between them. The
two modes can be interpreted as two waves, traveling clockwise and counter-
clockwise on the ring.

If circular symmetrical ring resonators are used with colinear feed lines,
then only one of the modes will be excited. Wolff showed that if the coupling
lines are arranged asymmetrically, as in Figure 2.3a, then both modes should
be excited [14]. The slight splitting of the resonance frequency can be easily
detected. Another way of exciting the two degenerate modes is to disturb the
symmetry of the ring resonator. Wolff also demonstrated this by using a notch
in the ring, as in Figure 2.3b [14].

Frequency splitting due to degenerate modes is undesirable in dispersion
measurements. If both modes are excited due to an asymmetric circuit, the 
resonant frequency may be less distinct. To eliminate this source of error, care
should be taken to ensure that the feed lines are perfectly colinear and the
ring line width is constant.

H
k

j
AJ kr BN kr nn nf wm

f= ¢ + ¢{ }
0

( ) ( ) sin( )

10 ANALYSIS AND MODELING OF RING RESONATORS

FIGURE 2.3 (a) Ring with asymmetrical feed lines, and (b) ring with a notch.



2.3.3 Mode Chart for the Resonator

It has been established that the field components on the microstrip ring 
resonator are Ez, Hr, and Hf. The resonant modes are a solution to the
eigenequation

(2.11)

and may be denoted as TMnml, where n is the azimuthal mode number, m is
the root number for each n, and l = 0 because ∂/∂z = 0. Close examination of
Equation (2.11) reveals that for narrow microstrip widths, as rl approaches ro,
the equation reduces to

(2.12)

The second term of Equation (2.12) is nonzero, and therefore

(kro)2 - n2 = 0 (2.13)

Substituting k = 2p/lg and rearranging yields the well-known equation

nlg = 2pro

which gives the resonances of the TMn10 modes.
Wu and Rosenbaum presented a mode chart for the resonant frequencies

of the various TMnm0 modes as a function of the ring line width [4]. They also
pointed out that Equation (2.11) is the same equation that must be satisfied
for the transverse electric (TE) modes in coaxial waveguides. The fields on the
microstrip ring resonator are actually the duals of the TE modes in the coaxial
waveguide.

From the mode chart of Wu and Rosenbaum, two important observations
can be made [4]. As the normalized ring width, ring width/ring radius, (w/R)
is increased, higher-order modes are excited. This occurs when the ring width
reaches half the guided wavelength, and is similar to transverse resonance on
a microstrip line. To avoid the excitation of higher-order modes, a design cri-
teria of w/R < 0.2 should be observed. The other observation is the increase
of dispersion on narrow rings. If rings for which w/R < 0.2 are used, then dis-
persion becomes important for the modes of n > 4. Wide rings do not suffer
the effects of dispersion as much as narrow rings.

2.3.4 Improvement of the Magnetic-Wall Model

The magnetic-wall model is a nonrigorous but reasonable solution to the cur-
vature problem in the microstrip ring resonator. The main criticism of the
model is that it does not take into account the fringing fields of the microstrip

( ) ( ) ( ) ( ) ( )kr n J kr N kr N kr J kro n o n o n o n o
2 2

1 1 0-[ ] -{ } =- -

¢ ( ) ¢ ( ) - ¢ ( ) ¢ ( ) =J kr N kr J kr N krn o n i n i n o 0
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line. In an attempt to take this into account, the substrate relative permittiv-
ity is made equal to the frequency-dependent effective relative permittivity,
eeff(f ), while retaining the same line width, w. Owens argued that this increases
the discrepancy between the quasi-static properties of the model and the
microstrip ring that it represents [2]. He further argued that dispersion char-
acteristics obtained in this way were still curvature-dependent. He proposed
to correct this inconsistency by using the planar waveguide model for the
microstrip line.

The planar waveguide model is similar to the magnetic-wall model of the
ring resonator. In this model the width of the parallel conducting plates, weff(f ),
is a function of frequency (see Fig. 2.4). The separation between the plates 
is equal to the distance between the microstrip line and its ground plane.
Magnetic walls enclose the substrate with a permittivity of eeff. The following
equations are used to calculate the effective line width:

(2.14)

where

(2.15)

and

(2.16)

where h is the substrate thickness, Z0 is the characteristic impedance, h0 is the
free space impedance, and c is the speed of light in a vacuum [15, 16].

To apply the planar waveguide model to the ring resonator, the inner and
outer radii of the ring, ri and ro, respectively, are compensated to give

(2.17)R r r w fo o i= +( ) + ( )[ ]1
2 eff

f
c

w
p =

eff eff( ) ( )0 0e

w
h

Z
eff

eff

( )
( )

0
0

0

0

=
h

e

w ff w
w w

f f p

eff
eff( )

( )
( )

= +
-

+
0

1 2
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FIGURE 2.4 (a) Microstrip line and its electric fields, and (b) the planar waveguide
model of a microstrip line.



(2.18)

where Ro and Ri are the radii using the new model. To find the resonant fre-
quencies of the structure, solve for the eigenvalues of Equation (2.11).

Experimental results for this model compare quite accurately with known
theoretical results. The results obtained for eeff were not curvature dependent
as in the other models.

2.3.5 Simplified Eigenequation

The eigenequation for the magnetic-wall model can be solved numerically to
determine the resonant frequency of a given circuit. The numerical solution is
a tedious and time-consuming process that would make implementation 
into CAD inefficient. Therefore closed-form expressions for the technically
interesting modes have been derived by Khilla [17]. The solution is as 
follows:

For the TMn10 modes

(2.19)

For the TM010 mode and 0.5 < X £ 1

(2.20)

where

and weff, Ro, and Ri are calculated from Equations (2.14), (2.17), and (2.18),
respectively. The constants A1n, A2n, A3n, B1n, B2n, B3n, and B4n are given in
Table 2.1. The accuracy is reported within ±0.4%.
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R R
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TABLE 2.1 Constants for the Simplified Eigenequation

n A1n A2n A3n B1n B2n B3n B4n

1 0.9206 0.0493 0.0794 -0.4129 -1.0773 5.9931 4.5168
2 1.5271 1.42E - 4 0.4729 6.3852 5.6221 -1.9139 3.8091
3 2.1005 4.42E - 6 0.8995 10.6240 9.6195 -8.3029 1.8957



2.3.6 A Rigorous Solution

The magnetic-wall model is a nonrigorous method of analysis for the ring 
resonator. This method requires that either a frequency-dependent eeff or a 
frequency-dependent line width be used to describe the edge effects.
This method adequately predicts the resonant frequency of not only the 
dominant modes but also higher-order modes; beyond this is may have limited
applicability.

A rigorous solution based on the variational or stationary principle was
developed by Pintzos and Pregla in 1978 [3]. A stationary expression was
established for the resonant frequency of the dominant mode by means of the
“reaction concept” of electromagnetic theory [18]. The reaction of a field Ea,
Ha, on a source Jb, Mb in a volume V is defined as

(2.21)

In the case of a resonant structure, the self-reaction ·a, aÒ, the reaction of a
field on its own source, is zero because the true field at resonance is source-
free [19].

An approximate expression for the self-reaction can be derived using a trial
field and source. By equating this to the correct reaction, a stationary formula
for the resonant frequency can be obtained [19]. The only source is the trial
current Js on the microstrip line. The field associated with such a current can
be considered a trial field as well. The self-reaction can now be defined as

(2.22)

Solving Equation (2.22) is the emphasis of the approach.
The fields existing in the structure can be expressed in terms of the vector

potentials A = uzYE and F = uzYH by means of the following relations:

(2.23)

(2.24)

The scalar potentials YE, YH satisfy the Helmholtz equation

(2.25)

(2.26)

and

ki
2 = k0

2eri , (2.27)

— + =Y YH
i

Hk 2 0

— + =Y YE
i

Ek 2 0

H A F= -— ¥ + — ¥— ¥
1

jwm

E F A= -— ¥ + — ¥— ¥
1

jwe

a a dV, = ◊ =Ú E Jtr tr
n

0

a b dVa b a b, ( )= ◊ - ◊Ú E J H M
n
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where i = 1, 2 and designates the subregions 1 (substrate) and 2 (air).
The solution of Equations (2.23) and (2.24) can be represented in the form

of the Fourier–Bessel integrals for each region:

In the dielectric

(2.28)

(2.29)

In the air

(2.30)

(2.31)

where

ri
2 + k0

2eri = kr
2 (2.32)

By applying the boundary conditions at the interface z = t, the coefficients An,
Bn, Cn, and Dn can be determined. The continuity boundary conditions are as 
follows:

Er,1 = Er,2

Ef,1 = Ef,2

Hr,1 - Hr,2 = -If(r,f)

Hf,1 - Hf,2 = -If(r,f)

where Ir(r, f) and If(r, f) are the components of the sheet current density Jtr

in the r and f directions, respectively.
After the coefficients An, Bn, Cn, and Dn are expressed in terms of the trial

current distribution on the surface, the expression for Etr can be formed from
Equation (2.23). Equation (2.22) can then be solved for the solution. Because
the r component of the current is usually small when compared to the f
current component, it can be neglected. This results in

(2.33)

for the stationary expression. This can be solved to determine the resonant
frequency of the structure. Although many steps were omitted in the proce-
dure explanation, the general idea of the method is presented.

Because this is a variational method, a crude approximation to the current
distribution can be made. The trial fields due to this trial current distribution

a a E z t I di, ( , ) ( ),= = =
•

Ú f fr r r r
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0
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0
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can be determined, as can the resonance. This method is a rigorous solution
of the microstrip ring resonator, but in some ways is less desirable than the
magnetic-wall model. The stationary formula is dependent on the trial current
distribution. For the lower-older modes, the current density may be easily
determine, but for the higher-order modes, the current density may be diffi-
cult to estimate. This would eliminate the analysis of higher-order modes. The
stationary formula also requires quite a bit more computational effort, which
may not be justified by the marginal increase in accuracy.

2.4 TRANSMISSION-LINE MODEL

It has been established that, although the ring has been studied extensively,
there is a need for a new analysis technique. The magnetic-wall model is
limited in that only the effects of varying the circuit parameters and 
dimensions can be studied. The rigorous solution using the stationary method
is also limited due to its extensive computational time and difficulty in 
application. To extend the study of the microstrip ring resonator, the 
transmission-line analysis has been proposed [8, 13]. In the transmission-line
approach, the resonator is represented by its equivalent circuit. Basic circuit
analysis techniques can be used to determine the input impedance. From the
input impedance the resonant frequency can be determined. This analysis
technique allows various microwave circuits that use the ring resonator to be
studied. The effect of the coupling gap on the resonant frequency can also be
studied (see Chap. 3).

Application of the transmission-line method hinges on the ability to accu-
rately model the ring resonator with an equivalent circuit. An equivalent
circuit for the ring resonator is proposed [8, 13] in this section. The feed lines,
coupling gap, and resonant structure are modeled and pieced together to form
an overall equivalent circuit, and the equivalent circuit is verified with exper-
imental results.

2.4.1 Coupling Gap Equivalent Circuit

The coupling gap is probably best modeled by an end-to-side gap. The end-to-
side coupling is shown in Figure 2.5. This discontinuity is a difficult problem
to solve because it cannot be reduced to a two-dimensional problem. The cou-
pling gap of the resonator must thus be approximated by an end-to-end cou-
pling gap. The end-to-end coupling gap is shown in Figure 2.6. The validity for
this approximation has to be determined by experimental results.

The evaluation of the capacitance due to a microstrip gap has been treated
by Farrar and Adams [20], Maeda [21], and Silvester and Benedek [22]. The
capacitance associated with the discontinuities can be evaluated by finding the
excess charge distribution near the discontinuity. The different methods used
to find the charge distribution are the matrix inversion method [20], variational
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method [21], and use of line sources with charge reversal [22].The matrix inver-
sion and variational methods both involve the subtraction of two nearly equal
numbers. Round-off error can become significant when two nearly equal large
numbers are subtracted [23].This subtraction could cause the matrix inversion
and variational methods to suffer from computational errors. The charge-
reversal method overcomes the round-off error difficulty and leads to
increased accuracy. We now describe the method of charge reversal.

The proposed equivalent circuit for the microstrip gap is a symmetric two-
port p-network shown in Figure 2.6. The capacitance C2 is due to the charge
buildup between the two microstrip lines. The capacitance C1 is due to the
fringing fields at the open circuits.There are two possible excitation conditions
at the gap, even and odd. The symmetric excitation results in the capacitance
Ceven. The equivalent circuit for the symmetric excitation is shown in Figure
2.7. The antisymmetric excitation results in the capacitance Codd. The equiva-
lent circuit for the antisymmetric excitation is shown in Figure 2.8.The method
of charge reversal is used to calculate Codd and Ceven. C1 and C2 can be com-
puted from the following equation:

TRANSMISSION-LINE MODEL 17

FIGURE 2.5 End-to-side coupling.

FIGURE 2.6 (a) End-to-end coupling, and (b) the equivalent circuit for the end-to-
end coupling.



(2.34)

(2.35)

The problem remains to obtain Ceven and Codd. If we let f•(P) be the potential
due to an infinitely extending microstrip line with a corresponding charge-
density distribution s•(P¢), then

(2.36)

where G•(P; P¢) is the Green’s function for the infinite microstrip. Now if 
we let fx(P) be the potential associated with a charge distribution s•(P¢) for
z ≥ x and -s•(P¢) for z < x, then

f s• • •= ¢ ¢ ¢Ú( ) ( ) ( ; )P P G P P dP

C C C2
1
2

1
2

= -Ê
Ë

ˆ
¯odd even

C C1
1
2

= even
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FIGURE 2.7 (a) Symmetric excitation of the coupling gap, and (b) the equivalent
circuit.

FIGURE 2.8 (a) Antisymmetric excitation of the coupling gap, and (b) the equivalent
circuit.
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FIGURE 2.9 Formulation of the microstrip gap in terms of line charges. (a) 
Microstrip with a gap. (b) G•; infinitely extending line charge. (c) Gs/2; charge reversal
at s/2. (d) G-s/2; charge reversal at -s/2. (e) Geven = G• + 1/2(Gs/2 - G-s/2). ( f ) Godd =
1/2(Gs/2 + G-s/2)

(2.37)

where Gx(P; P¢) is the Green’s function for the charge distribution with polar-
ity reversal at z = x.

Using Equations (2.36) and (2.37), three cases of line charges can be
formed: infinite extending line charge, charge reversal at s/2, and charge rever-
sal at -s/2.The infinite extending line charge is represented by Equation (2.36)
and shown in Figure 2.9b. According to Equation (2.37), line charges with
charge reversals at s/2 and -s/2 are governed by

f sx x( ) ( ) ( ; )P P G P P dP= ¢ ¢ ¢•Ú



(2.38)

(2.39)

and shown in Figures 2.9c and 2.9d.
If we superposition these lines by adding Equations (2.37) and (2.38) and

subtracting Equation (2.39), the result is

(2.40)

Equation (2.40) represent the charge distribution of the symmetric excitation 
represented by Figure 2.9e. Note that on the strips the potential is not f• but 
rather .A certain amount of extra charge fe

even must be added
to the two strips to raise the potential to f•. The potential corresponding to
the extra charge is

(2.41)

Noting that the excess charge s e
even(P¢) is responsible for the discontinuity

capacitance Ceven and solving Equation (2.41) for s e
even(P¢) results in

(2.42)

To evaluate Codd, we use a similar process. Subtracting Equations (2.38) and
(2.39) from Equation (2.37) results in

(2.43)

which represents the charge distribution of the asymmetrical excitation shown
in Figure 2.9f. A certain amount of charge is needed to raise the potential to
f• for z > s/2 and lower the potential to -f• for z < -s/2. The extra charge is
s e

odd and -s e
odd. The corresponding integral equation is
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(2.44)

and Codd is evaluated from

(2.45)

Using the concepts outlined earlier, Silvester and Benedek calculated 
the capacitance for a gap in a microstrip line [22]. The Green’s functions 
for the microstrip line are obtained by considering the multiple images of a
line charge when placed parallel to a dielectric slab [24]. Equations (2.42) 
and (2.43) permit the solutions for excess charge density and excess 
capacitance directly. Subtraction of two nearly equal large quantities is
avoided.

Numerical results for Codd and Ceven are avilable in the form of graphs 
the have been plotted for some discrete values of parameters [22]. The 
coupling capacitance C2 decreases with an increase in gap spacing, and for 
infinite spacing, C2 should approach zero. The shunt capacitance C1 should
equal the end capacitance of an open-ended line for an infinite spacing.
Difficulty arises when capacitance values are needed for parameters that 
have not been graphed. The number of available graphs is limited, and 
interpolation methods between these discrete values are not given. To 
solve this problem, Garg and Bahl [25] have taken the numerical results of 
Silvester and Benedek [22] and obtained closed-form expressions for Codd

and Ceven. The closed-form expressions were obtained by using polynomial
approximations of the available numerical results. The numerical results for
C1 and C2 are as follows [25, 26]:

(2.46)

where

(2.47)

(2.48)
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(2.49)

(2.50)

(2.51)

Note that there is an error in the calculation of Ceven from the equation
given in [25, 26]. The correct expression is shown here in Equation (2.48). The
values of Ceven and Codd for other values of er in the range 2.5 £ er £ 15 can be
calculated by using the following scaling factors:

(2.52)

(2.53)

In the expressions for Codd and Ceven, w is the strip width, h is the substrate
height, and s is the gap width. The expressions for the capacitances are quoted
to an accuracy of 7% for the mentioned ranges. An example of the capaci-
tance values that can be expected is shown in Figure 2.10.

2.4.2 Transmission-Line Equivalent Circuit

The ring resonator can be modeled by its transmission-line equivalent circuit.
In filter analysis it is a common practice to employ a lumped-parameter-
equivalent, two-port network for a particular length of transmission line. It is
assumed that the length and impedance of the line represented is known. The
general T-network is chosen for the analysis and shown in Figure 2.11. The
lumped parameters, Za and Zb, are expressed as follows:

(2.54)

(2.55)

where g is the propagation constant, l is the length of line represented, and Z0

is the characteristic impedance of the line.
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A transmission line can be characterized by four quantities: a resistance R
along the line, an inductance L along the line, a conductance G shunting the
line, and a capacitance C shunting the line. From these primary constants the
propagation of the wave along a line can be characterized by the complex
propagation constant g as

TRANSMISSION-LINE MODEL 23

FIGURE 2.10 Coupling capacitance (a) C1 and (b) C2 for w = 2.3495 mm, h =
0.762 mm, and er = 2.2.



(2.56)

or

g = a + jb (2.57)

where a = the attenuation constant and b = the phase constant (wave-
number).

In most RF transmission lines the effects due to L and C tend to dominate,
because of the relatively high inductive reactance and capacitive susceptibil-
ity. These lines are generally referred to as “loss-free” lines. If loss-free lines
are assumed, then R and G in Equation (2.56) become negligible, and the
equation becomes

(2.58)

or

g ª jb (2.59)

Substituting for g in Equations (2.54) and (2.55) yields the T-network param-
eters for loss-free lines:

(2.60)

(2.61)Z jZ lb = - 0 csc b

Z jZ
l

a = 0 2
tan

b

g wª j LC

g w w= +( ) +( )R j L G j C
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FIGURE 2.11 (a) Transmission line of length l and (b) the T-network equivalent.



Equations (2.60) and (2.61) are used for equivalent-circuit analysis.

2.4.3 Ring Equivalent Circuit and Input Impedance

The coupling gap and transmission line of the ring resonator have been
modeled by their lumped-parameter equivalent circuit. The total equivalent
circuit can now be pieced together to form a two-port network like that shown
in Figure 2.12. The circuit can be reduced to a one-port circuit by terminat-
ing one of the two ports with an arbitrary impedance. The terminating imped-
ance should correspond to the impedance of the feed lines. The feed lines 
will normally have an impedance equal to the impedance of the test 
equipment that they connect to. The standard for microwave measurements is
50 W.

Because of the symmetry of the circuit, the input impedance can be found
by simplifying parallel and series combinations. The input impedance is
expressed as [8, 13]:

(2.62)

(2.63)
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FIGURE 2.12 Equivalent circuit for the ring resonator [8]. (Permission from IEEE.)
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where

where R is the terminated load. The input impedance is 

Zin = Rin + jXin (2.64)

The equivalent circuit of the ring can also be modeled using commercially
available software such as Touchstone or Supercompact. The resonant fre-
quency for the circuit is defined as the frequency that makes the impedance
seen by the source purely resistive. In other words, the circuit resonates when
Xin = 0.

Using Equations (2.62) and (2.63), the impedance can be plotted as a 
function of frequency. The normalized imaginary (Xin/Z0) and real impedance
(Rin/Z0) are shown for an arbitrary circuit in Figure 2.13. As can be seen 
from the imaginary impedance (see Fig. 2.13b), there are two resonance 
points (Xin = 0), fs and fp. The resonance fs is a series resonance. At the fre-
quency fs, the imaginary impedance is equal to zero, and the real impedance
has a normalized value of 1 (see Fig. 2.13a). The resonance fp is a parallel 
resonance point. In the imaginary impedance, fp is an asymptote that is
approached from positive infinity and negative infinity. The resonance fp is a
parallel resonance point. At fp the real impedance has a maximum value. The
circuit Q of the ring resonator can be shown to be directly related to the size
of the coupling gap. As the size of the gap is increased, the series and parallel
resonance points become closer together and the Q is increased. The differ-
ence between fs and fp as a function of gap size is shown in Figure 2.14. We
will see later in the experimental results that as the coupling gap is increased,
the circuit Q is increased. The impedance function of a microstrip ring is
similar to the piezoelectric quartz crystal [27]. The crystal also has parallel and
series resonance points. The high Q in the crystal is a result of the low imped-
ance at fs followed by the high impedance at fp. The same is true for the ring
resonator. The close resonance points result in a steeper attenuation slope
before and after the resonant frequency than with conventional resonator
filters.

C
AZ

A Z B Z

D Z Z
Z Z B Z

A Z B Z

A
RC

C C R C C C

B
C C R C

b

a b

a b
b a b

a b

=
( ) + - -( )

= -( ) -
- -( )

( ) + - -( )
È

Î
Í

˘

˚
˙

=
+( ) + +( )[ ]

=
+( ) +

2

2 2

2

2 2

2
2

1 2
2

1
2

1 2
2

1 2
2 2

1
2

2 2

1
2

2

2 2

2w

w ++( ) +( )
+( ) + +( )[ ]

2

2

1 2 1 2

1 2
2

1
2

1 2
2

C C C C

C C R C C Cw w w



TRANSMISSION-LINE MODEL 27

FIGURE 2.13 Normalized input (a) resistance and (b) reactance for a ring with er =
2.2, h = 0.762 mm, w = 2.34954 mm, gap = 0.520 mm, and r = 10.2959 mm.

2.4.4 Frequency Solution

The solution of Equation (2.63) for the resonance condition Xin = 0 is merely
a root-finding problem [8, 13]. There are several methods available to solve
this problem, each of which has its advantages and disadvantages. The bisec-
tion method was chosen for the analysis. Other methods may offer greater



rates of convergence, but they cannot converge unless the function is well-
behaved and a good approximation is used for the initial guess.

The bisection method will converge for all continuous functions. Suppose
a continuous function f(x), defined on the interval [a, b], is given, with f(a) 
and f(b) of opposite sign (f(a)f(b) < 0). The method calls for the interval [a, b]
to be halved into two subintervals, [a, p] and [p, b], where . The
function is evaluated at point p and each subinterval is again checked 
for opposite signs ( f(a)f(p) < 0 or f(p)f(b) < 0). The interval that contains 
opposite signs is again halved. This procedure is repeated until the interval
being checked is smaller than a given tolerance or the solution is determined
exactly.

The bisection algorithm can be used for the solution of the resonant fre-
quency from Equation (2.63). Because this equation has two solutions that are
close together, special care has to be taken so that only the desired root is
obtained. It would be inconsistent to allow the algorithm to solve for fs one
time and fp another time. To avoid this inconsistency the root can be found by
a moving interval that always approaches from the same side. The interval [a,
b] is made smaller than the difference fp - fs. To find the series resonance the
initial guess f0 is made smaller than fs. The interval to be checked, [a, b], is then
started at f0(a = f0 and b = f0 + (b - a)). If no solution is found in that interval
(f(a)f(b) > 0), it is moved such that a = f0 + (b - a) and b = f0 + 2(b - a). The
interval is gradually moved until the solution lies within it. When the solution
is known to lie within the interval, the bisection algorithm is used to deter-
mine the solution.

p a b= +( )1
2
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FIGURE 2.14 Difference of the series and parallel resonance frequencies for an
increasing gap size.
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2.4.5 Model Verification

The transmission-line approach allows analysis of the ring resonators loaded
with discontinuities or solid-state devices. This analysis will not be valid if the
circuit model does not accurately represent the ring. This proposed equivalent
circuit should be verified by experimental results [13]. The most obvious
assumption is the use of the end-to-end model for the coupling gap.

Rings were designed on RT/Duroid 6010 and 5880. The data for the circuits
are in Table 2.2.

Experimental data on the resonant frequencies was measured for the first
two resonant modes (n = 1 and n = 2). These experimental resonant frequen-
cies are recorded in Table 2.3. The experimental data is then compared with
the theoretical resonant frequencies obtained using the transmission-line
method (upper half of Table 2.4), and the magnetic-wall model [2] (lower half).
It can be seen that the transmission-line method accurately predicts the reso-
nant frequency to within 1%. This is comparable to the results obtained from
the magnetic-wall model calculations in [2].

2.4.6 Frequency Modes for Ring Resonators [10]

Unlike the conventional magnetic-wall model, a simple transmission-line
model unaffected by boundary conditions is used to calculate the frequency
modes of ring resonators of any general shape such as annular, square, or
meander. Figure 2.15 shows the configurations of the one-port square and
annular ring resonators. For a ring of any general shape, the total length l may
be divided into l1 and l2 sections. In the case of the square ring, each section

TABLE 2.2 Data for the Circuits Used to Verify the Circuit Model

Relative Height Width Mean Radius Gap
Circuit Substrate Permittivity (mm) (mm) (mm) (mm)

1 6010 10.5 0.635 0.602 6.984 0.077
2 6010 10.5 0.254 0.279 2.451 0.066
3 5880 2.2 0.254 0.838 4.900 0.069

TABLE 2.3 Resonant Frequencies for the Circuits of
Table 2.2

Resonant Frequency (GHz)

Circuit n = 1 n = 2

1 2.56 5.00
2 7.19 14.28
3 7.10 14.13
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FIGURE 2.15 The configurations of one-port (a) square and (b) annular ring 
resonators [10].

TABLE 2.4 A Comparison of Table 2.3 and the
Theoretical Results from (upper) the Transmission Line
Method and (lower) the Magnetic-Wall Model

Frequency Error (%)

Circuit n = 1 n = 2

1 0.79 0.60
2 0.28 0.49
3 0.56 0.28

Frequency Error (%)

Circuit n = 1 n = 2

1 0.78 0.89
2 0.07 0.37
2 0.63 0.38



is considered to be a transmission line. z1 and z2 are the coordinates corre-
sponding to sections l1 and l2, respectively.The ring is fed by the source voltage
V at somewhere with z1,2 < 0. The positions of the zero point of z1,2 and the
voltage V are arbitrarily chosen on the ring.

For a lossless transmission line, the voltages and currents for the two 
sections are given as follows:

(2.65a)

(2.65b)

where V+
oe-jbz

1,2 is the incident wave propagating in the +z1,2 direction,
V+

oG1,2(0)ejbz
1 , 2 is the reflected wave propagating in the -z1,2 direction, G1,2(0) is

the reflection coefficient at z1,2 = 0, and Z0 is the characteristic impedance of
the ring.

When a resonance occurs, standing waves set up on the ring. The shortest
length of the ring resonator that supports these standing waves can be
obtained from the positions of the maximum values of these standing waves.
These positions can be calculated from the derivatives of the voltages and 
currents in Equation (2.65). The derivatives of the voltages are

(2.66)

Letting , the reflection coefficients can be found as

G1,2(0) = 1 (2.67)

Substituting G1,2(0) = 1 into Equation (2.65), the voltages and currents can be
obtained as

(2 .68a)

(2.68b)

Based on Equation (2.68), the absolute values of voltage and current stand-
ing waves on each section l1 and l2 are shown in Figure 2.16.

Inspecting Figure 2.16, the standing waves repeat for multiples of lg/2 on
the each section of the ring. Thus, to support standing waves, the shortest
length of each section on the ring has to be lg/2, which can be treated as the
fundamental mode of the ring. For higher order modes,
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where n is the mode number. Therefore, the total length of the square ring 
resonator is

l = l1 + l2 = nlg (2.70)

or in terms of the annular ring resonator with a mean radius r as shown in
Figure 2.15b,

l = nlg = 2pr (2.71)

Equation (2.70) shows a general expression for frequency modes and may be
applied to any configuration of microstrip ring resonators, including those
shown in [28, 29].

2.4.7 An Error in Literature for One-Port Ring Circuit

In [11], one- and two-port ring resonators show different frequency modes. For
a one-port ring resonator, as shown in Figure 2.17a, the frequency modes are
given as

n = 1, 2, 3, . . . (2.72a)

(2.72b)f
nc

r
o

eff

=
4p e

2
2

p
l

r n g=
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where fo is the resonant frequencies. For the two-port ring resonator, as shown
in Figure 2.17b, the frequency modes are

n = 1, 2, 3, . . . (2.73a)

(2.73b)

However, in Section 2.4.6, the one-port ring resonator has the same frequency
modes given in Equation (2.71) as those of the two-port ring resonator given
in Equation (2.73a). The results can also be investigated by EM simulation
performed by the IE3D electromagnetic simulator based on the method of
moment [30]. The ring resonators in Figure 2.17 are designed at fundamental

f
nc

r
o

eff

=
2p e

2p lr n g=
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FIGURE 2.17 Simulated electrical current standing waves for (a) one- and (b) two-
port ring resonators at n = 1 mode [10].



mode at 2 GHz with dielectric constant er = 10.2 and thickness h = 50 mil. As
seen from the simulation results in Figure 2.17, both exhibit the same electri-
cal current flows, which are current standing waves. Therefore, both one- and
two-port ring resonators have the same frequency modes as given in Equa-
tions (2.71) or (2.73a).

2.4.8 Dual Mode

The dual mode is composed of two degenerate modes or splitting resonant
frequencies that may be excited by perturbing stubs, notches, or asymmetrical
feed lines. The dual mode follows from the solution of Maxwell’s equations
for the magnetic-wall model of the ring resonator in Equations (2.3)–(2.5) and
(2.8)–(2.10). However, the ring resonator with a perturbing stub or notch at 
F = 45°, 135°, 225°, or 315° generates the dual mode only for odd modes.
Inspecting Equations (2.3)–(2.5) and (2.8)–(2.10), they cannot explain why the
dual mode only happens for odd modes instead of even modes when the ring
resonator has a perturbing stub or notch at F = 45°, 135°, 225°, or 315°. Also,
the magnetic-wall model cannot explain the dual mode of the ring resonator
with complicate boundary conditions. This dual-mode phenomenon may be
explained more simply and more generally using the transmission-line model
of Section 2.4.6, which describes the ring resonator as two identical lg/2 res-
onators connected in parallel. As seen in Figure 2.17, two identical current
standing waves are established on the ring resonator in parallel. If the ring
does not have any perturbation and is excited by symmetrical feed lines, two
identical resonators are excited and produce the same frequency response,
which overlap each other. However, if one of the lg/2 resonators is perturbed
out of balance with the other, two different frequency modes are excited 
and couple to each other. To investigate the dual-mode behavior, a perturbed
square ring resonator is simulated in Figure 2.18. The perturbed square ring
designed at fundamental mode of 2 GHz is fabricated on a RT/Duroid 6010.2
er = 10.2 substrate with a thickness h = 25 mil.

Figure 2.18 shows the simulated electric currents on the square ring res-
onator with a perturbing stub at F = 45° for the n = 1 and the n = 2 modes.
For the n = 1 mode, one of lg/2 resonators is perturbed so that the two lg/2
resonators do not balance each other. Thus, two splitting different resonant
frequencies are generated. Figures 2.18a and 2.18b show the simulated elec-
trical currents for the splitting resonant frequencies. Figure 2.19 illustrates the
measured S21 confirming the splitting frequencies for the n = 1 mode around
2 GHz. Furthermore, for the n = 2 mode, Figure 2.18c shows the perturbing
stub located at the position of zero voltage, which is a short circuit. Therefore,
the perturbed stub does not disturb the resonator and both lg/2 resonators
balance each other without frequency splitting. Measured results in Figure 2.19
has confirmed that the resonant frequency at the n = 2 mode of 4 GHz is not
affected by the perturbation.
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2.5 RING EQUIVALENT CIRCUIT IN TERMS OF G, L, C

The basic operation of the ring resonator based on the magnetic-wall model
was originally introduced by Wolff and Knoppik [1]. In addition, a simple
mode chart of the ring was developed to describe the relation between the
physical ring radius and resonant mode and frequency [4]. Although the mode
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FIGURE 2.18 The simulated electrical currents of the square ring resonator with a
perturbed stub at F = 45° for (a) the low splitting resonant frequency of n = 1 mode
and (b) high splitting resonant frequency of mode n = 1, and (c) mode n = 2 [10].



chart of the magnetic-wall model has been studied extensively, it provides only
a limited description of the effects of the circuit parameters and dimensions.
A further study on a ring resonator using the transmission-line model was
introduced in Section 2.4. The transmission-line model used a T-network in
terms of equivalent impedances to analyze a ring circuit. Although this model
could predict the behavior of a ring resonator well, it could not provide a
straightforward circuit view, such as equivalent lumped elements G, L, and C
for the ring circuit.

2.5.1 Equivalent Lumped Elements for Closed- and Open-Loop Microstrip
Ring Resonators [12]

As seen in Figure 2.20, the two-port network with an open circuit at port 2 
(i2 = 0) models a one-port network to find the equivalent input impedance
through ABCD matrix and Y parameters operations [31].

The ring resonator is divided by input and output ports on arbitrary posi-
tions of the ring with two sections l1 and l2 to form a parallel circuit. For this
parallel circuit, the overall Y parameters are given by

(2.74)

By setting i2 to zero, the input impedance Zic of the ring can be found as
follows:
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(2.75)

where lg = l/2 = lg/2. Using some assumptions and derivations for alg and blg

[12], the input impedance Zic can be approximated as

(2.76)

For a general parallel G, L, C circuit, the input impedance is [32]

(2.77)

Comparing Equation (2.76) with Equation (2.77), the conductance of the
equivalent circuit of the ring is

(2.78a)

and the capacitance of the equivalent circuit of the ring is
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The inductance of the equivalent circuit of the ring can be derived from
and is given by

(2.78c)

where Gc, Lc, and Cc stand for the equivalent conductance, inductance, and
capacitance of the closed-loop ring resonator. Figure 2.21 shows the equiva-
lent lumped element circuit of the ring in terms Gc, Lc, and Cc. Moreover, the
unloaded Q of the ring resonator can be found from Equation (2.78) and the
unloaded Q is

(2.79)

Figure 2.22a shows the configuration of open-circuited lg/2 microstrip ring
resonators with annular and U shapes. As seen in Figure 2.22a, l3 is the phys-

Q C Guc o c c g= =w p al
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equivalent elements Go, Lo, and Co [12]. (Permission from IEEE.)



ical length of the ring, Cg is the gap capacitance, and Cf is the fringe capaci-
tance caused by fringe field at the both ends of the ring. The fringe capaci-
tance can be replaced by an equivalent length Dl [33]. Considering the
open-end effect, the equivalent length of the ring is l3 + 2Dl = lg/2 = lg for the
fundamental mode.

Through the same derivations in Section 2.5.1, the input impedance Zio of
the open-loop ring can be approximated as

(2.80)

Comparing Equation (2.80) with Equation (2.77), the conductance, capaci-
tance, and inductance of the equivalent circuit of the ring are

(2.81)

The equivalent circuit in terms of Go, Lo, and Co is shown in Figure 2.22b.
Moreover, the unloaded Q of the ring is given by

(2.82)

Inspecting the equivalent conductances, capacitances, and inductances of
the closed- and open-loop ring resonators in Equations (2.78) and (2.81), the
relations of the equivalent lumped elements G, L, C between these two rings
can be found as follows:

(2.83a)

(2.83b)

In addition, observing the Equations (2.79) and (2.82), the unloaded Q of the
closed- and open-loop ring resonators are equal, namely

Quc = Quo for the same attenuation constant (2.84)

Equations (2.83a) and (2.84) sustain for the same losses condition of the
closed- and the open-loop ring resonator. In practice, the total losses for the
closed- and the open-loop ring resonator are not the same. In addition to 
the dielectric and conductor losses, the open-loop ring resonator has a radia-
tion loss caused by the open ends [34]. Thus, total losses of the open-loop ring
are larger than that of the closed-loop ring. Under this condition, Equations
(2.83a) and (2.84) should be rewritten as follows:

Quc > Quo and Gc < 2Go (2.85)
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(a)                                          (b) 

(c)                                          (d) 
FIGURE 2.23 Layouts of the (a) annular, (b) square, (c) open-loop with the curva-
ture effect, and (d) U-shaped open-loop ring resonators [12]. (Permission from IEEE.)

2.5.2 Calculated and Experimental Results

To verify the calculations of the unloaded Q and G, L, C of the closed- and
open-loop ring resonators [12], four configurations of the closed- and open-
loop ring resonators as shown in Figure 2.23 were designed at the fundamen-
tal mode of 2 GHz. The ring resonators were fabricated for two different
dielectric constants: RT/Duriod 5870 with er = 2.33, h = 10 mil, and t = 0.7 mil
and RT/Duriod 6010.2 with er = 10.2, h = 10 mil, and t = 0.7 mil, where er is the
relative dielectric constant, h is the substrate thickness, t is the foil thickness,
and D is the surface roughness.

As seen in Tables 2.5 through 2.8, the measured unloaded Qs and equiva-
lent lumped elements of the closed- and open-loop rings show good agree-
ment with each other. The largest difference between the measured and
calculated unloaded Q shown in Table 2.7 for the closed-loop square ring 
resonator is 5.7%.

2.6 DISTRIBUTED TRANSMISSION-LINE MODEL

The transmission-line model described in Section 2.4 is straightforward and
provides reasonably accurate results for simple circuits at low frequencies.The
method lends itself to CAD implementation, and circuits loaded with solid-
state devices and discontinuities along the rings can be analyzed. However,
the model is not accurate because the effects of the dispersive nature of 
the microstrip line and curvature of the ring resonator are neglected. A more
accurate distributed transmission-line model has been proposed to overcome
these problems [9, 35]. The model includes the losses and can deal with mul-
tiple devices, discontinuities, and feeds located at any place along the ring.This
section summarizes this method based on [35].
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TABLE 2.5 Unloaded Qs for the Parameters: er = 2.33, h = 10 mil, t = 0.7 mil, 
w = 0.567 mm for a 60-ohms Line, D = 1.397 mm, and lg = 108.398 mm

Open-loop 
Ring with the U-Shape

Annular Curvature Square Open-loop
Resonators Ring Effect Ring Ring

Designed Resonant Frequency 2 2 2 2
(GHz)

Measured Resonant Frequency 1.963 1.964 1.977 1.983
(GHz)

Measured Insertion Loss 32.66 31.33 32.3 33.12
Lmeas (dB)

Measured 3-dB Bandwidth 19 19.5 19 19.5
BW3dB,means(MHz)

Measured Loaded Q 103.32 100.72 104.05 101.69
Measured Unloaded Q 105.78 103.53 106.64 103.98
Calculated Unloaded Q 103.35 102.41 103.35 102.41

2.6.1 Microstrip Dispersion

When a radio frequency (RF) wave propagates down a microstrip line, both
longitudinal and transverse currents are excited. These currents cause the 
normally independent longitudinal section electric (LSE) and longitudinal
section magnetic (LSM) modes to couple, thereby producing a hybrid mode

TABLE 2.6 Equivalent Elements for the Parameters: er = 2.33, h = 10 mil, t = 0.7 mil,
w = 0.567 mm for a 60-ohms Line, D = 1.397 mm, and lg = 108.398 mm

Resonators Annular Open-loop Square U-Shape
Ring Ring with the Ring Open-loop

Curvature Ring
Effect

Calculated a (dB/mm) 2.45 ¥ 10-3 2.43 ¥ 10-3 2.45 ¥ 10-3 2.43 ¥ 10-3

Calculated Conductance 0.508 0.256 0.508 0.256
G (mS)

Calculated Capacitor 4.17 2.08 4.17 2.08
C (pF)

Calculated Inductor 1.52 3.04 1.52 3.04
L (nH)

Measured ameas (dB/mm) 2.38 ¥ 10-3 2.43 ¥ 10-3 2.36 ¥ 10-3 2.42 ¥ 10-3

Measured Conductance 0.495 0.253 0.49 0.252
G (mS)

Measured Capacitor 4.25 2.12 4.22 2.1
C (pF)

Measured Inductor 1.55 3.1 1.54 3.07
L (nH)
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TABLE 2.8 Equivalent Elements for the Parameters: er = 10.2, h = 10 mil, t = 0.7 mil, 
w = 0.589 mm for a 30-ohms Line, D = 1.397 mm, and lg = 55.295 mm

Resonators Annular Open-loop Square U-Shape
Ring Ring with the Ring Open-loop

Curvature Ring
Effect

Calculated a (dB/mm) 5.29 ¥ 10-3 5.27 ¥ 10-3 5.29 ¥ 10-3 5.27 ¥ 10-3

Calculated Conductance 1.12 0.56 1.12 0.56
G (mS)

Calculated Capacitor 8.33 4.17 8.33 4.17
C (pF)

Calculated Inductor 0.76 1.52 0.76 1.52
L (nH)

Measured ameas (dB/mm) 5.04 ¥ 10-3 5.09 ¥ 10-3 4.97 ¥ 10-3 5.06 ¥ 10-3

Measured Conductance 1.06 0.54 1.05 0.54
G (mS)

Measured Capacitor 8.44 4.23 8.21 4.11
C (pF)

Measured Inductor 0.77 1.54 0.75 1.5
L (nH)

TABLE 2.7 Unloaded Qs for the Parameters: er = 10.2, h = 10 mil, t = 0.7 mil, 
w = 0.589 mm for a 30-ohms Line, D = 1.397 mm, and lg = 55.295 mm

Resonators Annular Open-loop Square U-Shape
Ring Ring with the Ring Open-loop

Curvature Ring
Effect

Designed Resonant Frequency 2 2 2 2
(GHz)

Measured Resonant Frequency 1.974 1.968 2.03 2.03
(GHz)

Measured Insertion Loss Lmeas 35.83 35.48 35.48 33.4
(dB)

Measured 3-dB Bandwidth 20.5 21 20.5 21
BW3dB,mens (MHz)

Measured Loaded Q 96.29 95.36 97.71 95.38
Measured Unloaded Q 97.87 96.99 99.38 97.46
Calculated Unloaded Q 93.65 93.21 93.65 93.21

configuration [36]. The coupling increases with frequency, owing to the betten
confinement of the fields to the dielectric at higher frequencies. This can be
mathematically represented by introducing a frequency-dependent expression
for the effective dielectric constant (eeff(f )). A nonlinear relation between the



wave number and frequency is thus introduced, causing different frequencies
to propagate at different velocities. This phenomenon is termed microstrip 
dispersion.

Kirschning and Jansen [37] proposed an accurate closed-form empirical
relation for eeff(f ) that can readily be implemented into any CAD program.
This is given by

(2.86)

where

(2.87)

with

(2.88)

(2.89)

(2.90)

(2.91)

where f is the frequency in GHz; w and h are the microstrip width and height
in cm, respectively; er is the relative dielectric constant of the substrate; and ee

is the static value of the effective dielectric constant, which is dependent on
the geometry of the microstrip. In the limit f Æ 0, eeff(f ) Æ ee. Here ee is given
by

(2.92)

where

(2.93)

In the preceding equation, t denotes the thickness of the metal that constitutes
the microstrip line. The accuracy of Equation (2.86) is better than 0.6% in the
range 0.1 £ w/h £ 100, and 1 £ er £ 20, and is valid up to about 60 GHz. This
equation spans a fairly wide variety of frequencies and dielectric substrates,
hence eeff(f ) can be evaluated very accurately.
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2.6.2 Effect of Curvature

A curved microstrip line can be modeled as a cascade of sections of microstrip
lines with chamfered bends. Illustrated in Figure 2.24a is a typical bend in a
microstrip line for an arbitrary bend angle q ; also shown in the same figure
are the reference planes that define the edges of the bend. The equivalent
circuit of the bend, in the region restricted to the confines of the reference
planes, is shown in Figure 2.24b. For optimum chamfer, the ratio of the width
of the chamfered region b to the width of the microstrip line w is approxi-
mately 0.5 [38]. In the equivalent-circuit representation of the bend, the induc-
tance L and capacitance C represent the inductance associated with the
discontinuity and the capacitance to ground, respectively. Kirschning et al. [39]
derived an empirical closed-form expression to represent the equivalent
circuit of the bend. For optimum chamfer, the capacitance C (pf) and induc-
tance L (nH) are given by

(2.94)

(2.95)

where h and er are the thickness in mm and the dielectric constant, respec-
tively, of the substrate; and q is the angle of the chamfer in degrees, and in the
limit q Æ 180, C, L Æ 0. This reduces to the straight-line case; hence there are
no discontinuities. These equations are in general valid for w/h and er in the
ranges 0.2 £ w/h £ 6, and 2 £ er £ 13. When 0.2 £ w/h £ 1, the accuracy of the
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FIGURE 2.24 (a) Microstrip bend; (b) equivalent circuit.



model is within 0.3%. Since ring resonators are usually built on substrates with
dielectric constants greater than 2, and since w/h £ 1 for standard 50-W lines
on high dielectric-constant substrates, this model can be applied to accurately
model the curvature of conventional microstrip ring resonators. A more
detailed account of the application of this model to the microstrip ring res-
onator is presented in the following.

2.6.3 Distributed-Circuit Model

The distributed ring circuit model is described in [9, 35]. The basic microstrip
ring resonator is illustrated in Figure 2.25. Power is coupled into and out of
the resonator via two feed lines located at diametrically opposite points. If the
distance between the feed lines and the resonator is large, then the coupling
gap does not affect the resonant frequencies of the ring. The resonator in this
case is said to be “loosely coupled.” Loose coupling is a manifestation of the
negligibly small capacitance of the coupling gap. If the feed lines are moved
closer to the resonator, however, the coupling becomes tight and the gap
capacitance becomes appreciable. This causes the circuit’s resonant frequency
to deviate from the intrinsic resonant frequency of the ring. Hence, to accu-
rately model the ring resonator, the capacitance of the coupling gap should be
considered in conjunction with microstrip dispersion and curvature.

When the mean circumference of the ring resonator is equal to an integral
multiple of a guided wavelength, resonance is established. This may be
expressed as

2pr = nlg for n = 1, 2, . . . (2.96)

where r is the mean radius of the ring (i.e., r = (ri + ro)/2); lg is the guided wave-
length; and n is the mode number. This relation is valid for the loose coupling
case, as it does not take into consideration the effect of the coupling gap.
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FIGURE 2.25 Layout of the microstrip ring resonator.



In order to apply the distributed transmission-line model, the mean radius
of the ring resonator must be known. This may be estimated from Equation
(2.96) as follows: For a given frequency and a dielectric material of known
thickness, the dimensions of a 50-W line are estimated from a commercially
available program called Linecalc [40]; the effective dielectric constant and
guided wavelength are estimated from Equations (2.86) through (2.93). The
value of the guided wavelength thus determined is substituted into Equation
(2.96) to evaluate the mean radius of the ring. Although the resonant fre-
quencies of an ideal ring resonator are independent of the characteristic
impedance of the line that forms the closed loop, it is conventional to use lines
whose characteristic impedance corresponds to 50 W.

The approach underlying the distributed transmission-line model is that the
ring is analyzed as a polygon of n sides.This is illustrated in Figure 2.26 wherein
the ring resonator is represented by a 16-sided polygon. In actuality, however,
a 36-sided polygon was used, and it was found that any further increase in the
number of sides did not improve the accuracy of the model. The sides of the
polygon and the feed lines were modeled as sections of lossy microstrip trans-
mission lines; the length of each side of the polygon was fixed to be on thirty-
sixth of the ring’s mean circumference. The discontinuities at the vertices of
the polygon were modeled as optimally chamfered microstrip bends; for a 36-
sided polygon, the bend angle q is 170°. The gap between the feed lines and
the resonator is modeled in accordance with Hammerstad’s model [41] for the
microstrip gap. Although this gap model is valid only for symmetric gaps, it
was successfully applied to the asymmetric gaps between the feed lines and
the resonator. In actuality, the small curvature of the ring over the region cor-
responding to the width of the feed lines makes the gaps appear symmetric.
Further, when the ring is symmetrically excited, the maximum field points in
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FIGURE 2.26 Distributed transmission-line model [9]. (Permission from Electronics
Letters.)



both the feed lines and the resonator are collinear. This bears resemblance to
a microstrip gap, and hence application of the symmetric-gap model is further
justified.

Having represented the ring resonator as a cascade of sections of 
transmission lines with discontinuities, each section is modeled by its equiva-
lent ABCD-matrix.The ABCD-matrix for a transmission line (TRL) of length
l is

(2.97)

where the propagation constant g is given by

g = a + jb (2.98)

where a and b are the attenuation and phase constants, respectively.
The attenuation constant of a microstrip line is given as follows [42]:

(2.99a)

where and ac are dielectric and conductor

attenuation constants, and ereff(f) is the relative dielectric including the effects
of dispersion [43]. The conductor attenuation constant ac can be approxi-
mately expressed as [42]

(2.99b)

(2.99c)

(2.99d)
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with 

where Rs1 is the surface-roughness resistance of the conductor, Rs is the surface
resistance of the conductor, D is the surface roughness, ds = 1/Rss is the skin
depth, s is the conductivity of the microstrip line, f is the frequency, t is 
the microstrip thickness, w is the width of the microstrip line, and weff is the
effective width of the microstrip line.

The phase constant b is defined as

(2.100)

where lg is the guided wavelength of the line. For discontinuities such as gaps,
notches, or solid-state devices, the capacitances and inductances involved 
are modeled, respectively, as an admittance Y or an impedance Z.The ABCD-
matrices for an admittance (Y) and impedance (Z) are

(2.101)

and

(2.102)

The flowchart for the modeling procedure is shown in Figure 2.27. Com-
putation of the ABCD-matrix for the 36-sided polygon is done in two steps.
First, the ABCD-matrix for each half of the polygon is computed by cascad-
ing the ABCD-matrices corresponding to the transmission lines and bends.
This is transformed into a Y-matrix according to the following transformation:

(2.103)

The Y-matrices for each half-section are then added, and the resultant matrix
is transformed into an ABCD-matrix in accordance with the following 
transformation:
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(2.104)

The overall ABCD-matrix of the circuit is then computed by cascading the
equivalent ABCD-matrices for the feed lines, gap, and the resonator; 50 W
terminations are assumed at the input and output. The ABCD-matrix thus
obtained is converted to an S-matrix based on the following transformation:
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FIGURE 2.27 Flowchart for estimation of S-parameters.



(2.105)

where

(2.106)

The S-parameters are evaluated at several frequency points over a swept range
of frequencies. Resonant frequencies are then determined from plots of |S21|
versus f, and resonance is said to occur at points where the insertion loss (|S21|)
is minimum.

The model was implemented into Touchstone [45] and was applied to the
ring resonators reported by Pintzos and Pregla [3]. The results obtained are
shown in Figure 2.28 for the first, third, and fifth modes. The agreement
between theory and the experiments of Pintzos and Pregla is good even for
rings whose mean radii are small; the smaller the mean radius, the wider the
ring, and hence curvature effects are more pronounced. Thus, by virtue of
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FIGURE 2.28 Mean radius of ring vs. resonant frequency.
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FIGURE 2.29 Mode number vs. resonant frequency.

being valid for resonators of small mean radii, the accuracy of the model is
borne out even further.

Although the validity of the model was established by comparison with the
results of Pintzos and Pregla [3], the size of the coupling gap was 4 mm, and
hence the coupling was loose. In a circuit environment, however, it is desir-
able to have tight coupling to obtain a lower insertion loss. In this case, the
coupling gap affects the intrinsic resonances of the ring, and hence circuits
have to be simulated and tested in a tightly coupled environment, to validate
the accuracy of the model. Toward this, ring resonators were fabricated on RT
Duroid 6010 (er = 10.5) substrates as per the following dimensions:

Substrate thickness = 0.635 mm

Line width = 0.573 mm

Coupling gap = 0.25 mm

Mean radius of the resonator = 7.213 mm

These ring circuits were tested using an HP 8510B automatic network 
analyzer. The measured resonant frequencies were compared with the dis-
tributed transmission-line model in Figure 2.29. As can be seen, the results
compared quite well. It should be mentioned that the discrepancy between
theory and experiment is of the order of 1% for modes greater than 5; this is
attributed to the error margins associated with the discontinuity and disper-
sion models.
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CHAPTER THREE

Modes, Perturbations, and
Coupling Methods of 
Ring Resonators

3.1 INTRODUCTION

According to the simple model and field analysis in Chapter 2, many modes
can be supported by the ring resonators. All these modes satisfy the bound-
ary conditions and can be excited if desired. The excitation of these modes
depends on the perturbation and coupling methods. This chapter discusses the
various mode phenomena, excitation techniques, perturbations, and coupling
methods based on references 1 and 2.

The mode phenomenon of the annular ring element is caused by different
types of excitation and perturbation. The resonant modes of the coupled
annular ring circuit are divided into three groups according to the different
types of excitation and perturbation: (1) regular mode, (2) forced mode (or
excited mode), and (3) split mode. The operating principle and design rule of
each mode are discussed in the following sections. The discussion is concen-
trated on microstrip rings. However, the theory applies to waveguide ring cav-
ities and uniplanar rings.

3.2 REGULAR RESONANT MODES

A regular mode is obtained by applying symmetric input and output feedlines
on the annular ring element [1, 2]. The resonant wavelengths of the regular
mode are determined by Equation (2.1) and repeated here:
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(3.1)

where r is the mean radius of the annular ring element; lg is the guided wave-
length; and n is the mode number. Some modifications of the curvature effect
for this equation may result in a more accurate prediction of the resonant 
frequency [3].

The ring akin to any microwave resonator has both resonant and antire-
sonant frequencies. Basically, the ring comprises two half-wavelength linear
resonators connected in parallel. Since the parallel connection alleviates prob-
lems related to radiation from open ends, the ring has a higher Q-factor com-
pared to the linear resonator. Resonance occurs when standing waves are set
up in the ring; this happens when its circumference is an integral multiple of
the guided wavelength. To understand the basic phenomena underlying the
operation of the ring, it is imperative to first understand its field configuration
for the different modes. The absolute values of maximum field points for the
first four modes are shown in Figure 3.1; the field is minimum midway between
these points. In the absence of slits or other discontinuities, a maximum field
point occurs where the feed line excites the resonator. This point is inde-
pendent of the azimuthal position of the feed line that extracts microwave

2p lr n g=
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FIGURE 3.1 Maximum field points for the first four modes.



power. This is important from the standpoint of mode suppression. For
example, it can be seen from Figure 3.1 that when the azimuthal angle f = 90°,
there is a field minimum for the first and third modes. These modes and other
higher-order odd modes can be suppressed if the feed line that extracts power
is located at f = 90°. In the presence of discontinuities such as slits, the fields
in the resonator readjust themselves, so as to first satisfy the boundary condi-
tions caused by the slits in the resonator. In other words, if there are slits, then
the maximum field point is not necessarily collinear with the feed line that
excites the resonator.

The S21 characteristics of the first seven modes of the ring resonator whose
dimensions were specified in Section 2.6 are shown in Figure 3.2.A Smith chart
is shown in Figure 3.3. The frequencies corresponding to markers 1 through 5
in Figures 3.2 and 3.3 are the first five resonant frequencies of the ring. The
loops in the Smith chart indicate resonance. They are associated with the fact
that at resonance, the reactance X goes from either being inductive to capac-
itive or vice versa (i.e., the phase of the signal goes through zero). The fact
that the loops are skewed from the X = 0 line in the chart is attributed to the
finite reactances associated with the connectors and the feed lines. By using
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FIGURE 3.2 |S21| vs. frequency for the first seven resonances.



the through-reflect-line (TRL) calibration technique, these reactances can be
calibrated.

Antiresonance in the ring resonator can be illustrated with the aid of two
figures. Figure 3.4 shows a plot of |S21| versus frequency for the second and
third modes of the ring; Figure 3.5 shows the corresponding phase plot. As can
be seen from Figure 3.5, the phase change is abrupt at three frequencies,
thereby indicating the possibility of three resonances. However, there are only
two resonances observed in Figure 3.4. The frequency that is approximately
midway between these two resonances is the antiresonant frequency; passage
of this frequency is effectively blocked by the ring resonator.

3.3 FORCED RESONANT MODES

Forced modes are excited by forced boundary conditions on a microstrip
annular ring element [1, 4]. The boundary condition can be either open or
short. The open boundary condition is realized by cutting open slits on the
annular ring element [5]. The shorted boundary condition show in Figure 3.6
is obtained by inserting a thin conductor sheet inside the substrate.
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FIGURE 3.3 Smith’s chart for the first seven resonances.



The short plane in Figure 3.6 is located at the annular angle of 90°. This
boundary condition forces minima of the electric field to occur on both sides of
the short plane.The standing-wave patterns for the first four resonant modes are
illustrated in Figure 3.7.As shown in Figure 3.7, the standing-wave patterns with
the even mode numbers result in minimum magnitudes at the input and output
feed lines.This means that no energy is transferred between the input port and
the output port.Therefore the resonant modes with even mode numbers cannot
exist in this shorted forced mode.The theoretical and experimental results illus-
trated in Figure 3.8 and 3.9 agree with the standing-wave pattern analysis [4].
The theoretical analysis was based on the distributed transmission-line model
[6].Figure 3.8 shows that the even modes are nonexistent.The results agree with
the prediction of standing-wave pattern analysis. The test circuit was built on a
RT/Duroid 6010.5 substrate with the following dimensions:

Substrate thickness 0.635mm

Line width 0.6 mm

Coupling gap 0.1mm

Ring radius 6 mm

=

=

=

=
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FIGURE 3.4 |S21| vs. frequency for the second and third resonances.
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FIGURE 3.5 Phase of S21 vs. frequency for the second and third resonances.

FIGURE 3.6 Coupled annular circuit with short plane at qss = 90°.

According to the preceding analysis, a general design rule for the single
shorted boundary condition is summarized in the following:

Given an annular angle f = qss of the shorted conductor sheet, the resonant modes
that have integer mode number n = m · 90°/|qss|, for -90° £ qss £ 90°, or n = m ·
90°/|qss - 180°|, for 90° £ qss £ 270°, where m = 2, 4, 6, and so on, will not exist in



the shorted forced mode. On the other hand, the half-wavelength resonant modes
with mode number v = m/2, where m = 1, 3, 5, and so on, will be excited due to
the shorted boundary condition. If the shorted conductor sheet is at 0° or 180°
of the annular angle, then there is no energy transferred between the input port
and the output port.

A similar design rule for the single open slit, as mentioned before, can also
be summarized in the following:

Given an annular angle f = qos of the open slit, the resonant modes that have
integer mode number n = m · 90°/|qoy|, for -90° £ qos £ 90°, or n = m · 90°/|qos -
180°|, for 90° £ qos £ 270°, where m = 1, 3, 5, and soon, will not exist in the opened
forced mode. On the other hand, the half-wavelength resonant modes with mode
number v = m/2, where m = 1, 3, 5, and so on, will be excited due to the open
boundary condition. If the open slit is at 0° or 180° of the annular angle, then the
resonant modes are regular modes.

3.4 SPLIT RESONANT MODES

The split resonant mode was first reported by Wolff [7]. He used asymmetric
feedlines or notch perturbation to obtain the split resonant modes. Besides
these methods, two other new techniques can also be used to generate the split
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FIGURE 3.7 Standing wave patterns of the shorted forced mode.
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FIGURE 3.8 |S21| vs. frequency for the shorted forced mode: (a) theoretical result; (b)
experimental result.



resonant mode.According to the different types of perturbation, the split mode
can be classified into the following four types: (1) coupled split mode [7], (2)
local resonant split mode, (3) notch perturbation split mode [7], and (4) patch
perturbation split mode. Figure 3.10a–d illustrate the basic circuit structures
for these four types of split resonant modes [4]. The following sections discuss
the operating principle and design rule for each type of split resonant modes
[1, 4].

3.4.1 Coupled Split Modes

The coupled split mode, as shown in Figure 3.10a, is generated by asymmetric
feedlines [7]. The annular angle q between the asymmetric feed lines deter-
mines the splitting frequency of the split mode [8]. The power transmission
can be calculated as [8]:

(3.2)

where g11 and b11 denote the normalized input conductance and susceptance,
respectively, of a one-port annular ring resonator of the same size. The power
transmission versus frequency is illustrated in Figure 3.11 [8]. As shown in
Figure 3.11, the double-tuned characteristics are always found, except when 
q = p or q = p/2 [8].
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FIGURE 3.9 Resonant frequency vs. mode number for the shorted forced mode.



3.4.2 Local Resonant Split Modes

The local resonant split mode, as shown in Figure 3.10b, is excited by chang-
ing the impedance of one annular sector on the annular ring element.The high-
or low-impedance sector will build up a local resonant boundary condition to
store or split the energy of the different resonant modes. Figure 3.12 illustrates
a coupled annular ring element with a 45° high-impedance local resonant
sector (LRS). According to the standing-wave pattern analysis, only the 
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(a)

(b)

(c)

(d)

q

qLR

qno

qpa

FIGURE 3.10 Four types of split modes: (a) coupled split mode; (b) local resonant
split mode; (c) notch perturbation split mode; (d) patch perturbation split mode.



resonant modes with mode number n = 4m, where m = 1, 2, 3, and so on, have
integer multiple of half guided-wavelength inside the perturbed sector. This
means that these resonant modes can build up a local resonance and maintain
the continuity of the standing-wave pattern inside the perturbed region. The
other resonant modes that cannot meet the local resonant condition will suffer
energy loss due to scattering inside the perturbed sector. According to the
analysis of the standing-wave pattern, it is expected that only the fourth mode
will maintain the resonant condition and the other modes will split. The 
theoretical and experimental results illustrated in Figure 3.13 agree very well.
The test circuit was built on a RT/Duroid 6010.5 substrate with the following
dimensions:
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FIGURE 3.11 Power transmission of an asymmetric coupled annular ring resonator.

FIGURE 3.12 Layout of the symmetric coupled annular circuit with 45° LRS.



Following the standing-wave pattern analysis, the mode phenomenon for
the 45° LRS is found to be the same as that of the 135° LRS. The theoretical
and experimental results for the 135° LRS is shown in Figure 3.14. They agree
with the prediction of the standing-wave pattern analysis. The same results
occur between the 60° and 120° LRS. Therefore the period of the annular
degree for the LRS is 180°.

From the preceding discussion a general design rule for the use of local res-
onant split modes is concluded in the following:

Given an annular degree f = qLR of the LRS, the resonant modes that have
integer mode number n = m · 180°/|qLR|, for -90° £ qLR £ 90°, or n = m · 180°/|qLR

- 180°|, 90° £ qLR £ 270°, where m = 1, 2, 3, and so on, will not split.

3.4.3 Notch Perturbation Split Modes

Notch perturbation, as shown in Figure 3.10c, uses a small perturbation area
with a high impedance line width on the coupled annular circuit [7]. If the 

Substrate thickness 0.635mm

Line width 0.6 mm

LRS line width 0.4 mm

Coupling gap 0.1mm

Ring radius 6 mm

=
=
=
=
=
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FIGURE 3.13 Resonant frequency vs. mode number for 45° LRS.



disturbed area is located at the position of the maximum or the minimum elec-
tric field for some resonant modes, then these resonant modes will not split 
[2, 6]. A general design rule for the notch perturbation split mode is concluded
in the following:

Given an annular degree f = qno of the notch perturbation, the resonant modes
with integer mode number n = m · 90°/|qno|, for -90° £ qno £ 90°, or n = m · 90°/
|qno - 180°|, for 90° £ qno £ 270°, where m = 1, 2, 3, and so on, will not split. If the
notch perturbation area is at 0° or 180° of the annular angle, then all the reso-
nant modes will not split.

3.4.4 Patch Perturbation Split Modes

Patch perturbation utilizes a small perturbation area with low-impedance line
width, as shown in Figure 3.10d. The design rule and analysis method is the
same as for the notch perturbation. The advantage of using patch perturba-
tion is the flexibility of the line width. A larger splitting range can be obtained
by increasing the line width. The splitting range of the notch perturbation, on
the other hand, is limited by a maximum line width [7]. As mentioned in the
previous notch perturbation design rule, if the patch perturbation area is at 0°
or 180° of the annular angle, then all the resonant modes will not split.

3.5 FURTHER STUDY OF NOTCH PERTURBATIONS

A ring-resonator circuit is said to be asymmetric, if when bisected one-half is
not a mirror image of the other. Asymmetries are usually introduced either by
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FIGURE 3.14 Resonant frequency vs. mode number for 135° LRS.



skewing one of the feed lines with respect to the other, or by introduction of
a notch [2, 6]. A ring resonator with a notch is shown in Figure 3.15. Asym-
metries perturb the resonant fields of the ring and split its usually degenerate
resonant modes. Wolff [7] first reported resonance splitting in ring resonators
by both introduction of a notch and by skewing one of the feed lines. To study
the effect of such asymmetries, it is worthwhile to first consider the fields of a
symmetric microstrip ring resonator. The magnetic-wall model solution [9] to
the fields of a symmetric ring resonator are

(3.3a)

(3.3b)

(3.3c)

where A and B are constants; Jn(kr) is the Bessel function of the first kind of
order n; Nn(kr) is the Bessel function of the second kind of order n; and k is
the wave number; the other symbols have their usual meaning.A close scrutiny
of the solution would indicate that another set of degenerate fields, one that
also satisfy the same boundary conditions, is also valid. These fields are given
by
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FIGURE 3.15 Layout of a notched ring resonator.



These two solutions could be interpreted as two waves, one traveling clock-
wise, and the other anticlockwise. If the paths traversed by these waves before
extraction are of equal lengths, then the waves are orthogonal, and no reso-
nance splitting occurs. However, if the path lengths are different, then the
normally degenerate modes split. Path-length differences and hence resonance
splitting can be caused by disturbing the symmetry of the ring resonator. This
can be done by placement of a notch along the ring. However, resonance split-
ting has a strong functional dependence on the position of the notch, and on
the mode numbers of the resonant peaks. For very narrow notches, if the notch
is located at azimuthal angles of f = 0°, 90°, 180°, or 270°, then one of the two
degenerate solutions goes to zero and only one solution exists. This is based
on the assumption that a narrow notch does not perturb the fields of the sym-
metric ring appreciably, since the fields are at their maximum at these loca-
tions. However, if f = 45°, 135°, 225°, or 315°, then for odd n both solutions
exist and the resonances split because the symmetry of the ring is disturbed;
for even n, one of the solutions goes to zero as discussed earlier, and hence
the resonances do not split. For other angles, the splitting is dependent on
whether or not solutions exist. Although the preceding equations can be used
to predict resonance splitting, it is very difficult to estimate the degree of split-
ting, as it is dependent on the mode number, the width of the notch, and the
depth of the notch. Using the distributed transmission-line model reported in
the previous chapter, the degree of resonance splitting can be accurately pre-
dicted. The notch was modeled as a distributed transmission line with step dis-
continuities at the edges. The modes that split, the degree of splitting, and the
insertion loss were all estimated using this model. To compare with experi-
ments, circuits were designed to operate at a fundamental frequency of
approximately 2.5GHz. These designs were delineated on a RT/Duroid 6010
(er = 10.5) substrate with the following dimensions:

Figures 3.16 and 3.17 show the experimental results for notches located at
f = 0° and 135°, respectively.When f = 0°, there is no resonance splitting.When
f = 135°, the odd modes split. Figure 3.18 shows a comparison of theory and
experiment for the degree of resonance splitting of odd modes. The good
agreement demonstrates that not only can the modes that split be predicted,
but so can the degree of splitting.

Substrate thickness 0.635mm

Line width 0.573mm

Coupling gap 0.25mm

Mean radius of the ring 7.213mm

Notch depth 0.3mm

Notch width 2 mm

=

=

=

=

=

= .0
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Resonance splitting can also be obtained by skewing one feed line with
respect to the other. However, the degree of resonance splitting is very small
because the asymmetry is not directly located in the path of the fields. In this
case, resonance splitting occurs because the loading effect of the skewed feed
line is different for the counterclockwise fields as compared to the clockwise
fields, or vice versa.

3.6 SLIT (GAP) PERTURBATIONS

The attractive characteristics exhibited by the microstrip ring resonator have
elevated it from the state of being a mere characterization tool to one with
other practical applications; practical circuits require integration of devices
such as varactor and PIN diodes. Toward this end, slits have to be made in the
ring resonator, to facilitate device integration. Concomitantly, there exists the
problem of field perturbation to be contended with [2, 10]. Fortunately, this
problem can be alleviated by strategically locating these slits.The introduction
of slits will excite the forced resonant modes.
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FIGURE 3.16 |S21| vs. frequency for notch at f = 0° [6]. (Permission from Electronics
Letters.)
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FIGURE 3.17 |S21| vs. frequency for notch at f = 135° [6]. (Permission from Electron-
ics Letters.)

FIGURE 3.18 Comparison of theory and experiment for resonance splitting [6].
(Permission from Electronics Letters.)



The maximum field points for the first two modes of a ring with a slit at 
f = 90° are shown in Figure 3.19. The modes that this structure supports 
are the n = 1.5, 2, 2.5, 3.5, 4, . . . , and so on, modes of the basic ring resonator.
Also worth mentioning is the fact that odd modes are not supported in this
slit configuration. This nonsupport stems from the contradictory boundary
condition requirements of an odd mode in a closed ring (field minimum at f
= ±90°), and the slit (field maximum at slit). As can be seen from Figure 3.19,
however, half-modes are supported. In the presence of slits, the fields in the
resonator are altered so that the corresponding boundary conditions are sat-
isfied. Due to this, the maximum field points of some modes are not collinear,
but appear skewed about the feed lines.To efficiently extract microwave power
from a given mode, the extracting feeding line has to be in line with the
maximum field point of that mode. If this condition is not satisfied, the modes
whose maximum field points are not in line with the extracting feed line will
not be coupled efficiently to the feed line as compared to those whose
maximum field points do line up with the feed line. In order to verify this
proposition experimentally, slits were etched into a plain ring resonator that
was designed to operate at a fundamental frequency of approximately 2.5
GHz.These designs were delineated on a RT/Duroid 6010 (er = 10.5) substrate
with the following dimensions:

Substrate thickness 0.635mm

Line width 0.573mm

Coupling gap 0.25mm

Mean radius of the ring 7.213mm

Slit width 0.25mm

=

=

=

=

=
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FIGURE 3.19 Maximum field points for slit at f = 90° [10].



The measured results are shown in Figure 3.20. As can be seen, the first res-
onant peak occurs at approximately 3.75GHz, which corresponds to the n =
1.5 half-mode; the even modes centered between the half-modes can also be
seen. The half-modes are partially supressed as compared to the even modes,
because their maximum field points are not in line with the extraction feed
line. The n = 1.5 mode is approximately 10dB down as compared to the n = 2
mode. The distributed transmission-line model was applied to the circuit just
given, and the aforementioned observations were verified.

To further the preceding study, a ring resonator with two slits located at 
f = ±90° was considered. The maximum field points for the first two modes
supported by this structure are shown in Figure 3.21. The modes that this 
structure supports are the n = 2, 4, 6, . . . , and so on, modes of the basic ring
resonator; all odd modes are suppressed, and there are no half-modes. The
measurement corresponding to this device is shown in Figure 3.22. As can be
seen, the first resonance occurs at approximately 5GHz (n = 2), the second at
10 (n = 4), and so on. Resonance splitting in this figure is attributed to the 
differences in path lengths of the normally orthogonal modes of the ring res-
onator. This difference stems from the few degrees of error in slit placement
that occurred during mask design.
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FIGURE 3.20 |S21| vs. frequency for a slit at f = 90° [10].
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FIGURE 3.21 Maximum field points for slits at f = ±90°.

FIGURE 3.22 |S21| vs. frequency for slits at f = ±90°.



The mode configuration of the structure least susceptible to slit-related field
perturbation is shown in Figure 3.23.These modes are identical to those shown
in Figure 3.1 for the basic ring resonator.To experimentally verify this, a circuit
with two slits, one at f = 0° and the other at f = 180° was fabricated; the circuit
dimensions were the same as those mentioned previously. On measurement,
the results obtained were identical to that of Figure 3.2 (corresponding to the
basic ring), and hence are not shown separately. Thus, it has been clearly
demonstrated that by strategically locating discontinuities such as notches and
slits, a variety of modes can be obtained.

3.7 COUPLING METHODS FOR MICROSTRIP RING RESONATORS

Coupling efficiency between the microstrip feedlines and the annular
microstrip ring element will affect the resonant frequency and the Q-factor of
the circuit. Choosing the right coupling for the proper application circuit is
important [2, 4]. According to the different coupling peripheries, the coupling
schemes can be classified into the following [4]: (1) loose coupling [9] or
matched loose coupling [11], (2) enhanced coupling [2, 12], (3) annular cou-
pling, (4) direct connection, and (5) side coupling [13]. These five types of cou-
pling schemes are shown in Figure 3.24a–f.

The loose-coupling scheme shown in Figure 3.24a results in the least dis-
turbed type of coupling. The high-Q resonator application uses the loose 
coupling. Unfortunately the loose coupling suffers from the highest insertion
loss because of its small effective coupling area [2, 12]. There is one variety of
loose coupling that was developed to increase the coupling energy by using a
matched coupling stub. Figure 3.24b shows this type of matched loose coupling
[11].

The enhanced-coupling scheme shown in Figure 3.24c is designed by punch-
ing the feed lines into the annular ring element. This type of coupling is used
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FIGURE 3.23 Maximum field points for slits at f = 0° and 180° [10].
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(a)
Coupling Gaps

(b)
Coupling Gaps

Matched Stubs

Upper Path

(c)
Lower Path

FIGURE 3.24 Coupling methods of annular ring element: (a) loose coupling; (b)
matched loose coupling; (c) enhanced coupling; (d) annular coupling; (e) direct con-
nection; ( f ) side coupling.

to increase the coupling periphery, but it slightly degrades the Q-factor of the
resonator [2, 12]. By breaking the unity of the annular element, two parallel
linear resonators that have a certain amount of curvature are formed. This
type of coupling is also called quasi-linear coupling.

The third type of coupling as illustrated in Figure 3.24d is called annular
coupling. This type of coupling scheme is developed to achieve the highest
energy coupling. The coupling length is designed in terms of two annular
angles, that is, qin and qout. By increasing the coupling length, higher coupling
energy will be achieved. This type of coupling is used for a circuit design that



needs large energy coupling. An example is the active filter design that
requires a large coupled negative resistance [14].

This direct-connection coupling method shown in Figure 3.24e is used in the
hybrid ring or rat-race ring. The operating theory is discussed in Chapter 8.

The side-coupling method shown in Figure 3.24f was reported in [13]. It was
found that two distinctive but very close resonant peaks exist due to odd- and
even-mode coupling. Introducing proper breaks in the ring will maintain the
resonance characteristics of one mode while shifting the other peak away from
the region of interest [13].

3.8 EFFECTS OF COUPLING GAPS

The coupling gap is an important part of the ring resonator. It is the separa-
tion of the feed lines from the ring that allows the structure to only support
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FIGURE 3.24 (Continued.)



selective frequencies. The size of the coupling gap also affects the perform-
ance of the resonator. If a very small gap is used, the losses will be lower but
the fields in the resonant structure will also be more greatly affected. A larger
gap results in less field perturbation but greater losses. It is intuitive that the
larger the percentage of the ring circumference the coupling region occupies,
the greater the effect on the ring’s performance.

First, considering the coupling gap size effects on resonant frequencies,
Figure 3.25 shows a one-port ring circuit configuration and its equivalent
circuit.

The coupling gap between the feed line and the ring is represented by a L-
network capacitance Cg and Cf [15]. The lossless ring resonator is expressed
by a shunt circuit of Lr and Cr. In addition, comparing Cg and Cf, the coupling
gap is significantly dominated by Cg. To simplify the calculation of the input
impedance, the fringe capacitance Cf is neglected as shown on the right of
Figure 3.25b. The total input impedance obtained from the simple equivalent
circuit is given by
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Figure 3.25 One-port ring circuit (a) configuration and (b) equivalent circuit.



where w is the angular frequency. At resonance, Zin = 0 and the resonant
angular frequency can be found as

(3.6)

Inspecting Equation (3.6), if the coupling gap size g is decreased (Cg increases),
and therefore, the resonant frequencies move to lower locations. This equa-
tion shows the smaller size of coupling gap the lower resonant frequency.

The coupling gap size effect on the insertion loss can be observed from the
two-port ring circuit in Figure 3.26.

S21 of the simplified equivalent circuit on the right of Figure 3.26b is given by

(3.7)

where and Zo is the characteristic impedance.

Inspecting Equation (3.7), when the coupling gap size g is decreased
(increased), Cg and S21 increases (decreases). To verify above observations in
Equations (3.6) and (3.7), a two-port ring circuit designed at a fundamental
frequency of 2GHz is simulated using IE3D [16].

In Figure 3.27, it can be found that a smaller (larger) gap size g has a lower
(higher) insertion loss and more (less) significant effect on resonant frequency.
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Figure 3.26 Two-port ring circuit (a) configuration and (b) equivalent circuit.



Also, as the gap size g is increased (decreased), the loaded Q-factor decreases
(increases) as expected.

In many of the ring’s applications, the resonant frequency is measured in
order to determine another quantity. For example, the resonant frequency is
used to determine the effective permittivity (eeff) of a substrate and its dis-
persion characteristics. It is important in this measurement that the coupling
gap not affect the resonant frequency of the ring and introduce errors in the
calculation of eeff.Troughton realized this and took steps to minimize any error
that was introduced [17]. He would initially use a small gap. The resonant fre-
quency was measured and then the gap was etched back. Through repeated
etching and frequency measurements the point was determined at which the
feed lines were not seriously disturbing the fields of the resonator. This is a
very tedious and time-consuming process. It would be very useful if a method
could be developed that would enable the effects of the coupling gap on the
resonant frequency to be determined.

The transmission-line method [18, 19] has the ability to predict the effects
of the gap on the resonant frequency. It has been verified that the proposed
equivalent circuit does give acceptable accuracy, but it should be pointed out
that if the circuit does have a weakness it is the model used to represent the
coupling gap. To verify the ability of the model to predict the gap dependence
of the resonant frequency, experimental data were compiled and compared to
the theoretical predictions.

Another method to predict the coupling gaps was proposed by Zhu and 
Wu [20]. They presented a joint field/circuit mode for coupling gaps of a ring
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circuit. The equivalent circuit model was derived from field theory and
expressed in terms of a circuit network.

3.9 ENHANCED COUPLING

Although the loose-coupling method shown in Figure 3.24a is the most com-
monly used of the six types discussed earlier, it suffers from high insertion loss.
To improve high insertion loss caused by loose couplings, many new configu-
rations were introduced [21–25]. The philosophy underlying the design of
these schemes is to increase the coupling strength (Cg) between feed lines and
ring resonators. This has been discussed in Section 3.8. The enhanced coupling
ring circuit with minimum perturbation shown in Figure 3.28 is designed to
improve the insertion loss [2, 12].

As was mentioned in Section 3.5, the fields of the ring are least perturbed
if discontinuities are present at points of field maximum (i.e., at f = 0° and 
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Figure 3.28 Three novel excitation schemes with much lower insertion losses: a, b,
and c [12]. (Permission from Electronics Letters.)



f = 180°). Hence, by increasing the coupling periphery at these points, the
insertion loss of the ring can be reduced with minimal field perturbation. The
measured results of the ring resonator shown in Figure 3.28a were given in
Figure 3.29 and Table 3.1 for the first seven resonant frequencies. The meas-
ured data for resonators shown in Figure 3.28b and c are also given in Figure
3.29b and Table 3.1. These ring circuits were designed at a fundamental fre-
quency of 2.5GHz and fabricated on a RT/Duroid 6010.5 substrate with a
thickness h = 0.635mm and a relative dielectric constant er = 10.5. The dimen-
sions of the circuits are as follows:

Inspecting the results, all of the proposed excitation schemes have a much
lower insertion loss as compared with the basic plain ring. Also, superiority of
scheme C can be clearly seen; for modes 2 and above the insertion loss of this
scheme is about 5dB, making it considerably better than the other circuits.The
inconsistent trends in the insertion losses for the basic ring and the ring cor-
responding to scheme B, is attributed to variations associated with the process
of circuit etching. However, if conventional solid-state photolithographic tech-
niques are used, then much better pattern definition can be obtained. Also, if
the gap size is made smaller (but not small enough to cause an RF short), then
even smaller insertion losses can be obtained. In Table 3.1 the resonant 
frequencies of the circuits discussed earlier are compared; the frequency 
differences are attributed to minor differences in the lengths of the 
resonating section and the coupling effects.

To obtain a better low insertion loss, a ring resonator with more coupling
periphery is shown in Figure 3.30. This configuration is usually designed for a
filter application.

line width 0.573mm

coupling gap 0.25mm

mean radius of the ring 7.213mm

=
=
=
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TABLE 3.1 Comparison of Resonant Frequencies of Different Modes

Resonant Frequency (GHz)

Mode Plain Scheme Scheme Scheme
Number Ring A B C

1 2.48 2.5 2.48 2.46
2 4.88 4.96 4.91 4.88
3 7.36 7.48 7.39 7.34
4 9.76 9.92 9.76 9.7
5 12.08 12.3 12 12
6 14.4 14.68 14.44 14.36
7 16.64 16.96 16.62 16.56
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(a)

(b)

Figure 3.29 (a) |S21| vs. frequency for scheme A and (b) insertion loss vs. mode number
for different ring resonators.



Furthermore, to reduce the coupling gap effect on insertion loss and reson-
ant frequencies, Figure 3.31 shows a ring circuit with one coupling gap [26].
Observing this circuit, with one coupling gap, the ring resonator has less effect
on resonant frequencies and a low insertion loss can be reduced because one
of two coupling gaps has been eliminated.

Another method to increase the coupling and lower the insertion loss is 
to use the dielectrically shielded ring resonator [18, 27] or dielectric overlay
on top of the gaps [28]. Insertion loss of less than 1dB can be achieved in 
these ways by using an insulated copper tape placed over the gap [28]. The
coupling capacitance is formed by the insulation material between the tape
and the microstrip line. This coupling capacitance corresponds to a much
smaller gap.
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Enhanced Coupling Periphery

Figure 3.30 Configuration of an enhanced coupling ring resonator.

Input

Output

Figure 3.31 A dual-mode ring circuit with one single coupling gap.



3.10 UNIPLANAR RING RESONATORS AND COUPLING METHODS

Although the microstrip is the most mature and widely used planar transmis-
sion line, other forms of transmission lines are available for flexibility in ring
circuit design [1, 29, 30]. These uniplanar transmission lines include coplanar
waveguide (CPW), slotline, and coplanar strips (CPS). The characteristics of
these transmission lines are listed in [31, p. 299].

The coplanar waveguide can be an alternative to the microstrip in hybird
microwave integrated circuits (MIC) and monolithic microwave integrated cir-
cuits (MMIC). The center conductor and ground planes are on the same side
of the substrate to allow easy series and shunt connections of passive and
active solid-state devices. Use of CPW also circumvents the need for via holes
to connect the center conductor to ground and helps to reduce processing
complexity in monolithic implementations.

The slotline ring resonator was first proposed by Kawano and Tomimuro
[32] for measuring the dispersion characteristics of slotline. The theorectical
and experimental results agree well within 0.5% in their measurement. In 1983
Stephan et al. [33] developed a quasi-optical polarization-duplexed balanced
mixer using a slotline ring antenna. The technique reported in [33] used the
dual-mode feature of the slotline ring antenna. Slotline rings have also been
implemented in a frequency-selective surface [34–36] and a tunable resonator
[30, 37]. As a frequency-selective surface, the ring array has a reflection 
bandwidth of about 26% and a transmission/reflection-band ratio of 3 : 1. the
varactor-tuned slotline ring resonator in [37] has a tuning bandwidth of over
23% from 3.03GHz to 3.83GHz.

The slotline ring resonator has been analyzed with equivalent transmission-
line model [33], distributed transmission-line model [30, 37], spectral domain
analysis [38], and Babinet’s equivalent circular loop [39, 40]. The distributed
transmission-line method provides a simple and straight-forward solution.

Coupling between the external feed lines and slotline ring can be classified
into the following three types: (1) microstrip coupling, (2) CPW coupling, and
(3) slotline coupling. Figure 3.32 shows these three possible coupling schemes.

As shown in Figure 3.32, the microstrip coupling that utilizes the microstrip-
slotline transition [31, 41] is a capacitive coupling. The lengths of input and
output microstrip coupling stubs can be adjusted to optimize the loaded-Q
values. However, less coupling may effect the coupling efficiency and cause
higher insertion loss. The trade-off between the loaded-Q and coupling loss
depends on the application. Figure 3.33 shows the measured and calculated
frequency responses of insertion loss for the microstrip-coupled slotline ring
resonator. The test circuit was built on a RT/Duroid 6010.5 substrate with 
the following dimensions: substrate thickness h = 0.635mm, characteristic
impedance of the input/output microstrip feed lines Zm0 = 50W, input/output
microstrip feed lines with line width Wm0 = 0.57 mm, characteristic impedance
of the slotline ring ZS = 70.7W, slotline ring line width WS = 0.2mm, and slot-
line ring mean radius r = 18.21mm. The S-parameters were measured using
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standard SMA connectors with an HP-8510 network analyzer. The calculated
results were obtained from the distributed transmission-line model.

The CPW-coupled slotline ring resonator using CPW-slotline transition is
also a capacitively coupled ring resonator. The CPW coupling is formed by a
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Figure 3.32 Three possible feed configurations for the slotline ring resonators [29].
(Permission from IEEE.)

Figure 3.33 Measured and calculated frequency responses of insertion loss for a
microstrip-coupled slotline ring resonator from 2GHz to 8GHz [29]. (Permission from
IEEE.)



small coupling gap between the external CPW feed lines and the slotline ring.
The loaded-Q value and insertion loss are dependent on the gap size. The
smaller gap size will cause a lower loaded-Q and smaller insertion loss. This
type of slotline ring resonator is truly planar and also allows easy series and
shunt device mounting. Figure 3.34 shows the measured and calculated 
frequency responses of insertion loss for the CPW-coupled slotline ring 
resonator. The test circuit was built on a RT/Duroid 6010.5 substrate with the
following dimensions: substrate thickness h = 0.635mm, characteristic imped-
ance of the input/output CPW feed lines ZC0 = 50W, input/output CPW feed
lines gap size GC0 = 0.56mm, input/output CPW feed lines center conductor
width SC0 = 1.5mm, characteristic impedance of the slotline ring ZS = 70.7W,
slotline line width WS = 0.2mm, slotline ring mean radius r = 18.21mm, and
coupling gap size g = 0.2mm.

The slotline ring coupled to slotline feeds is an inductively coupled ring 
resonator. The metal gaps between the slotline ring and external slotline feeds
are for the coupling of magnetic field energy. Therefore, the maximum 
electric field points of this resonator are opposite to those of the capacitively
coupled slotline ring resonators. Figure 3.35 shows the measured and calcu-
lated results of insertion loss for the slotline ring resonator with slotline feeds.
The test circuit was built on a Duroid/RT 6010.5 substrate with the following
dimensions: substrate thickness h = 0.635mm, characteristic impedance of the
input/output slotline feed lines ZS0 = 56.37W, slotline feeds line width WS0 =
0.1mm, characteristic impedance of the slotline ring ZS = 70.7W, slotline ring
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Figure 3.34 Measured and calculated frequency responses of insertion loss for a
CPW-coupled slotline ring resonator from 2GHz to 8GHz.



line width WS = 0.2mm, slotline ring mean radius r = 18.21mm, and coupling
gap g = 0.2mm.

As mentioned previously, the inductively slotline ring is the dual of the
capacitively coupled slotline ring. The coupling of the capacitively coupled
slotline ring resonators, as shown in Figure 3.33 and 3.34, becomes more effi-
cient at higher frequencies. However, the coupling of the inductively coupled
slotline ring with slotline feeds is less efficient at higher frequencies as shown
in Figure 3.35. The reason for this phenomenon is the difference between the
capacitive coupling and inductive coupling.

A uniplanar CPW ring resonator can also be constructed [30]. Figure 
3.36 shows such a circuit. The circuit can be analyzed using a distributed 
transmission-line model similar to that described for the microstrip ring 
resonator in Chapter 2.

To demonstrate the performance of a CPW ring resonator, a ring was built
with a mean diameter of 21mm using 0.5-mm slotlines spaced 1.035mm apart
on 0.635-mm Duroid/RT Duroid 6010.5.

Figure 3.37 shows that the performance of the CPW ring is corrupted by
the propagation of even-coupled slotline modes along the ring. To suppress
these unwanted modes, the center disk of the ring must be maintained at
ground potential.Wire bonding can be used at the input and output of the ring
and along the ring itself to maintain the center disk ground potential but may
prove to be labor intensive. A cover maintains the center disk at ground 
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Figure 3.35 Measured frequency responses of insertion loss for a slotline ring 
resonator with slotline feeds.
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Figure 3.36 CPW ring resonator fed by CPW transmission lines.

Figure 3.37 Insertion loss of a CPW ring with even and odd modes propagating [30].
(Permission from IEEE.)



potential all along the circumference of the ring; it also as seals and protects
the circuit. The enclosure suppresses all even-mode propagation and reduces
its inductive effect on the CPW odd mode. The enclosure and assembly shown
in Figure 3.38 avoids wire bonding and soldering but requires alignment and
good pressure contact with the ring. The height and width of the enclosure do
not require high-tolerance machining.

Figure 3.39 shows the theoretical and measured results for the enclosed
CPW ring. The theoretical results were obtained based on the distributed
transmission-line equivalent circuit. The transmission-line parameters were
determined based on formulas in [31, p. 275].The gap capacitances were deter-
mined empirically. The agreement is within 2.91%.

3.11 PERTURBATIONS IN UNIPLANAR RING RESONATORS

As the microstrip ring resonator, the uniplanar ring structure could support
both cosine and sine solutions. For feed lines located at 0° and 180°, the
maximum E-field points are at 0° and 180°, and only the cosine mode satisfies
the boundary conditions. However, perturbations will excite the other mode
and cause mode split [1, 29]. By using a microstrip perturbation on the back-
side of the slotline ring, the regular resonances will become split resonant
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Figure 3.38 The enclosure for the CPW ring assembly [30]. (Permission from IEEE.)



modes. Figure 3.40 shows the measured frequency response of insertion loss
for a slotline ring resonator with a microstrip perturbation at 45°. As shown
in the figure, the resonant modes with mode numbers

(3.8)

where q = 45° and m = 1, 2, 3, . . . , will not split. According to the E-field mode
chart, the 45° location of the microstrip perturbation is just at the maximum
E-field point of the fourth resonant mode. The maximum E-field point corre-
sponds to a magnetic-wall point that will not be disturbed by the microstrip
perturbation. Other measured results for the perturbed slotline ring resona-
tors with microstrip perturbation at 60° and 36° on the rear also agree with
the general design rule of Equation 3.38.

The slotline type of varactor-tuned resonator deals the forced resonant
modes of ring structure. The forced resonant modes of ring structure are
excited by either short or open boundary conditions with respect to the elec-
tric or magnetic field. Figure 3.41 shows the measured frequency response of

n m=
∞180

q
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Figure 3.39 Theorectical vs. measured insertion loss and resonant frequencies of a
CPW ring resonator [30]. (Permission from IEEE.)



insertion loss for the slotline ring resonator with a short plane at 90°. Accord-
ing to the E-field mode chart, the maximum E-field points of the even reso-
nant modes are located at the short boundary point. This means that the even
resonant modes cannot exist in this perturbed ring structure, whereas the half-
wavelength resonant modes will be excited due to the short boundary condi-
tion at 90°. The mode numbers of forced resonant modes shown in Figure 3.41
are given by

(3.9a)

for half-wavelength resonant modes, where m = 1, 3, 5, . . . , or

(3.9b)

for full-wavelength resonant modes were m = 1, 2, 3, . . . .

n m= -2 1

n m= 2
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Figure 3.40 Measured frequency response of insertion loss for a slotline ring 
resonator with backside microstrip perturbation at 45°.
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CHAPTER FOUR

Electronically Tunable 
Ring Resonators

4.1 INTRODUCTION

In this chapter the varactor tuned resonator is studied [1]. The varactor is a
two-terminal solid-state device that utilizes the voltage variable capacitance
of the PN junction. When a varactor is mounted in series in the transmission
line of the ring, the variable capacitance is used to change the resonant fre-
quency of the structure. The arrangement of the varactor-tuned ring is given
in Figure 4.1. The resonant frequency of the ring is normally determined by
its physical dimensions. The addition of the capacitance in the ring is equiva-
lent to the addition of a given length of transmission line to the ring’s cir-
cumference.A larger capacitance will result in a larger circumference, and thus
lower the resonant frequency. As the capacitance is decreased, the resonant
frequency will increase. Because the capacitance in the PN structure of the
varactor diode is voltage dependent, the resonant frequencies of the varactor-
tuned resonator can be tuned electronically.

Before the varactor-tuned resonator can become useful in microwave cir-
cuits, it is important that the effects of the introduced capacitance on the res-
onant frequency be predictable by analysis. If the resonant frequency cannot
be accurately determined by a theoretical method, then the design of the 
varactor—ring circuits will be the result of a trial-and-error process. Trial-
and-error design methods are time-consuming and would make the 
varactor-tuned ring less likely to be used.
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The magnetic-wall model is the most accurate ring analysis technique.What
is gained in accuracy is in turn lost in flexibility. The magnetic-wall model
cannot easily be altered to include the effect of a varactor. This is the primary
reason that the transmission-line method has been developed. It is shown in
Chapter 2 that the transmission-line method can accurately determine the res-
onant frequency of a simple microstrip ring. This analysis can easily be altered
to include the varactor. To include the varactor in the analysis would require
that an equivalent circuit for the varactor diode be incorporated into the
already proposed equivalent circuit for the ring. In this chapter an equivalent
circuit for the varactor is proposed and the varactor-tuned ring is analyzed by
the transmission-line method outlined in Chapter 2, although for better accu-
racy, the distributed transmission-line method, also given in Chapter 2, can be
used.

4.2 SIMPLE ANALYSIS

The varactor-tuned ring was first introduced in 1986 in a paper by Makimoto
and Sagawa [2]. Conventional varactor-tuned filters have been quarter- or half-
wavelength linear resonators. The disadvantages of linear resonators are dis-
cussed in Chapter 2. The authors realized the disadvantage of conventional
filters and proposed the varactor-tuned ring because of its increased stability
and steeper attenuation slope in the stopband.

For the resonator circuit shown in Fig. 4.2, the input admittance of the
circuit could be given as

(4.1)

where Yo is the characteristic admittance of the line; qT is the total electrical
length of the line; and CT is the tuning capacitance. The steps taken to obtain
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FIGURE 4.1 A varactor-tuned ring resonator.



Equation (4.1) are not explained in the reference, but it does take a form
similar to the transmission-line equation

(4.2)

where YL is the load admittance. Using Equation (4.1), the tuning range of 
the varactor-tuned circuit was predicted. Experimental results showed that 
the varactor could be used to tune the resonant frequency of the ring, but the
authors note that (4.1) could not accurately predict the response.The resonant
frequencies were lower than expected and the tuning range was smaller. Errors
were attributed to stray inductance that was not included in the analysis. This
method is also unable to include the effect of the coupling gap in the circuit.
More accuracy might have been obtained if the parasitics of the varactor had
been included in the admittance equation.

4.3 VARACTOR EQUIVALENT CIRCUIT

The varactor is a solid-state diode whose capacitance is a result of the PN junc-
tion. Every semiconductor diode has some internal junction capacitance.
Usually, however, this internal capacitance is insignificant because it is inten-
tionally kept as small as possible so that it will not degrade normal diode oper-
ation. Basically, the varactor is a special-purpose junction diode. But it differs
from other diodes in one important respect: it is designed and fabricated
specifically to make its junction capacitance useful [1, 3]. This design is such
that the varactor has a usable internal capacitance, high parallel resistance, and
low series resistance. Thus, capacitance, which is an unavoidable nuisance in
conventional diodes, is deliberately cultivated in the varactor. It is both novel
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FIGURE 4.2 Structure of ring resonator for analysis [2]. (Permission from IEEE.)



and useful that this capacitance can be varied at will by varying the voltage
applied to the diode. This phenomenon enables a tiny varactor to do the work
of a conventional variable capacitor that is many times larger.

In the formation of a PN junction two regions that possess opposite types
of conductivity are brought together. The P material possesses holes as its
majority carrier, and the N material possesses electrons as its majority carrier.
The Fermi levels of these two materials differ as a result of the different con-
ductivity. When the two materials are brought together in contact, the Fermi
levels work to align themselves. This is accomplished by the flow of electrons
to the P region and the flow of holes to the N region. The Fermi level align-
ment results in a layer of charge storage that is termed the depletion region.
In the depletion region no free carriers exist, so it is effectively called an insu-
lator. The diode then has the appearance of a positive region (P) separated
from a negative region (N) by an intrinsic or insulating region. This structure
is identical to two flat plates separated by a dielectric. This arrangement
describes any two-plate capacitor. In this type of capacitor the capacitance is
directly proportional to the effective area of the plates and the dielectric con-
stant of the dielectric, and is inversely proportional to the separation of the
plates. The junction capacitance can then be expressed as

(4.3)

where e is the dielectric constant; A is the plate area; and d is the plate sepa-
ration. By analogy, in the semiconductor junction, A is the area of the N and
P regions that face each other across the junction; d is the thickness of 
the depletion region; and e is the dielectric constant of the depletion layer
semiconductor.

For a given diode both A and e will be constant, but d can be varied depend-
ing on the applied voltage. If the diode is forward biased, the depletion region
is decreased and the internal capacitance increases. If the diode is reverse
biased, the depletion region increases and the internal capacitance decreases.
Reverse biasing results in a small reverse current. Figure 4.3 shows the actual
plot of a varactor capacitance as a function of voltage obtained with a C-V
meter and x-y plotter for an M/A COM varactor diode (Model MA-46600).
In Figure 4.3a the forward-biased varactor is shown, and in Figure 4.3b the
reverse-biased varactor capacitor is shown. The varactor is usually operated
as reverse biased since forward-biased voltage results in a large leakage
current and low Q.

The junction capacitance can be expressed as [4]
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where Cj0 is the capacitance at zero bias voltage, Vbi is the built-in potential of
1.3 volts for GaAs, and g is a parameter depending on the PN junction doping
profile.

Any varactor used in a circuit will also introduce parasitic components from
the packaging in addition to the resistance and capacitance of the semicon-
ductor. A typical cross-sectional view of a packaged diode is shown in Fig. 4.4.
It is seen that the package consists of an insulating casing separating two
metallic end pieces sealed in such a manner as to provide a hermitic encap-
sulation for the semiconductor within. Within the package the semiconductor
is usually mounted on a post or pedestal with a suitable strap making contact
to the opposite end of the diode. Both the metallic ends and insulating ceramic
parts contribute inductance and capacitance between the contacts of the actual
semiconductor element and the connections to the external diode housing or
package. From the consideration of the package an equivalent circuit can be
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FIGURE 4.3 C-V traces for the (a) forward- and (b) reverse-biased varactor diode.



proposed.The equivalent circuit given in Figure 4.5 can also be used for diodes
other than varactors. The only difference will be the value of the parameters.

In Figure 4.5 Cj is obviously the capacitance that arises from the semicon-
ductor junction. It is this value in which we are most interested; all the others
are undesirable but unavoidable. The value Rs is the series resistance due 
primarily to the bulk resistance of the semiconductor. Minimizing Rs increases
the Q of the varactor (here, Q = 1/wRsCj), reducing power losses in the circuit
and increasing the overall circuit Q. Typically higher Q-values are obtainable
with hyperabrupt junction varactors because of the lower bulk resistance.

The parameters Cp, Lp, and Ls are the parasitics introduced by the package.
The capacitance Cp, which appears in shunt, is a combination of the capaci-
tance that exists between the upper contact and the metallic mount of the
semiconductor and the insulating housing. Because of the close spacing
required in microwave frequency circuits, particularly for small elements that
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FIGURE 4.4 Diagram of a varactor package cross section.

FIGURE 4.5 Equivalent circuit of a packaged varactor.



possess small junction capacitances, the capacitance contribution can become
quite significant. The capacitance C2 is also included in Figure 4.5. Here C2 is
the capacitance that arises from the gap in the transmission line across which
the diode will be mounted. This is the same gap capacitance discussed in
Chapter 2. The gap shunt capacitance, C1, is omitted because its effects are
considered to be negligible.

In addition to the capacitances, all metallic portions of the package will
introduce inductance. The inductance is divided into two components Ls and
Lp.The inductance Lp appears in series with the junction capacitance.The most
significant contributions of the inductance come from the metallic contacting
strap and the post upon which the semiconductor element is mounted. The
contributions are significant because of the very small cross-sectional dimen-
sions of the parts with lengths that are comparable to the dimensions of the
package. The inductance Ls represents the series inductance of the outer end
parts to the external contacting points.This can become very large if long leads
are required for bonding to the circuit.

The equivalent circuit does to some extent actually represent the physical
contributions of the typical packaged diode structure and can be useful over
a wide range of frequencies. Values for the equivalent circuit will vary for each
diode type and package style. Because the packaged-diode equivalent circuit
is widely recognized, manufacturers usually supply typical parameter values
for each package style and diode type.

4.4 INPUT IMPEDANCE AND FREQUENCY RESPONSE OF THE
VARACTOR-TUNED MICROSTRIP RING CIRCUIT

Now that the equivalent circuit for the varactor has been proposed, the input
impedance of the circuit can be determined [1, 3]. In Chapter 2 it was verified
that the transmission-line method could be used to accurately determine the
resonant frequency of the microstrip ring resonator. The equivalent circuit of
Figure 2.12 should then adequately represent the ring and coupling gaps. The
varactor-tuned ring will differ only slightly from the plain ring resonator.

To mount the varactor in the circuit, the ring will be cut at two points and
the varactor placed across one of the cuts, while a dc block capacitor is
mounted across the other cut. The dc block capacitor is chosen to have a large
value. The capacitor is required so that a dc bias voltage can be applied across
the cathode and anode of the varactor. At microwave frequencies the capac-
itance will appear as a short and have very little effect. For low frequency,
however, the capacitance appears as an open circuit and allows the varactor
to be biased. To apply the voltage to the device, bias lines connect to the ring.
The bias lines are high impedance lines. The bias lines act as RF chokes, pre-
venting the leakage of RF power, while at the same time allowing the applied
dc bias voltage to appear across the terminals of the device. The layout for the
varactor-tuned ring is given in Figure 4.6.
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Because Figure 2.12 has proved to be accurate, we will modify it to repre-
sent the varactor-tuned ring. The only changes made to the ring are the intro-
duction of the varactor, dc block capacitor, bias lines, and gaps cut in the ring.
If the bias lines are designed with a high enough impedance, they should have
little effect on the circuit and will be neglected in the analysis. The proposed
equivalent circuit for the varactor-tuned ring is given in Figure 4.7.The param-
eters C1 and C2 are discussed in Chapter 2 and are used to model the input and
output coupling gaps. The parameters Za and Zb are from the T-model for the
transmission line of the ring, also discussed in Chapter 2. The impedance Zbot

represents the bypass capacitor. Because the bypass capacitor wilt be large
(usually 10pF or larger), the capacitance of the gap across which the dc block
is mounted can be neglected. In fact, because the bypass capacitor is large, it
acts as a very low impedance (short circuit) at microwave frequencies. Thus,
for this application the dc block capacitor could be neglected, but it can be
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FIGURE 4.6 Diagram of varactor-tuned ring resonator [3]. (Permission from IEEE.)

FIGURE 4.7 Equivalent circuit of a varactor-tuned ring [3]. (Permistion from IEEE.)



included to make the input impedance equations more flexible for other appli-
cations. The impedance Ztop represents the varactor mounted in the ring. The
equivalent circuit for the varactor was given in Figure 4.5.

The load seen by the ring at the output coupling gap is given as Z¢L where

(4.5)

and A and B are defined in Chapter 2. The ring structure is not symmetrical
and therefore cannot be reduced through combinations of series and parallel
impedances. A unit voltage is applied to the circuit and six loop currents are
visualized. From the six loop currents, a system of six equations and six
unknowns is formed. The input impedance looking into the gap, Z¢, can be cal-
culated by solving the sixth-order system of equations for the currents due to
a unit source. The system to be solved is

(4.6)
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(4.7)

The input impedance of the circuit, Zin, can be found by replacing C and D of
Chapter 2 by C¢ and D¢, respectively.

To facilitate the solution of (4.7) the IMSL subroutine LEQ2C was used
[6]. The IMSL library is a collection of mathematical and statistical subrou-
tines written in Fortran. The subroutine LEQ2C is used to solve a system of
complex equations.

The resonant frequency of Figure 4.7 can be determined in two ways. The
first method was discussed in Chapter 2, the bisectional method. Using 
the bisection algorithm the frequency can be determined at which Xin = 0. The
second method uses the S-parameters of the circuit. The ratio of the reflected
power over the incident power can be determined from

(4.8)

where Zin is the input impedance of the circuit and Zo is the characteristic
impedance. From S11, the ratio of transmitted power over the incident power,
for a lossless circuit, can be determined from

(4.9)

The resonant frequency is the point at which S12 reaches a maximum, result-
ing in maximum power transfer. The condition S12 = max and Xin = 0 occur at
the same frequency, and it is equally correct to apply either condition. The S-
parameter method will become more important later when the attenuation at
some frequency is desired.

Using (4.8) and (4.9) the frequency response of a typical varactor-tuned ring
can be compared to a plain ring resonator of similar dimensions. Figure 4.8a
shows the frequency response of a typical ring resonator. Figure 4.8b shows
the frequency response of a typical varactor-tuned ring. A few interesting
things can be seen in the comparison of Figure 4.8a and Figure 4.8b. The odd
modes in the varactor-tuned ring disappear while the even modes remain un-
affected and coincide exactly with the even modes of the plain ring. Introduced
in the varactor-tuned ring are what can be called “half-modes.” If the varac-
tor is removed from the circuit, but the ring is still cut, the half-modes will lie
exactly between the even and missing odd modes.

Figure 4.9 is used to explain the mode phenomena. This figure displays the
positive maximum and negative maximum electric field distribution on a ring
with a gap in it.The boundary condition at the gap requires that there be either
a positive maximum or negative maximum at that point. In the even modes
(n = 2 and n = 4), this condition is satisfied with or without the gap and the
fields are not disturbed. In the odd modes (n = 1 and n = 3), the boundary con-
ditions cannot be satisfied and therefore the modes cannot exist. Because the
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potential across the gap does not have to be continuous (of the same sign),
the new half-modes, which satisfy the boundary conditions, are formed.

When the varactor is mounted across the gap in the ring, it is similar to an
open circuit when the diode is operated as reverse biased. It would be safe to
assume that the even modes would not be affected and the odd modes would
disappear.The half-modes should also appear.We now have only the even and
half-modes present. Figure 4.10 shows the excitation at the varactor for the
even modes. For any amount of impedance change of the varactor the overall
circuit impedance remains unchanged. Figure 4.11 shows the excitation of the
varactor for the half-modes. An impedance change on the varactor will result
in a change of the overall impedance and therefore change the resonant fre-
quency. From these arguments it can be expected that for the varactor-tuned
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FIGURE 4.8 Typical frequency response of (a) a ring and (b) a varactor-tuned ring.
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FIGURE 4.10 Excitation of the varactor for the even modes.

FIGURE 4.11 Excitation of the varactor for the half-modes.

FIGURE 4.9 Mode chart for a varactor-tuned ring [3]. (Permission from IEEE.)



ring the newly introduced half-modes will be tuned, the even modes will
remain unchanged, and the odd modes will disappear.

4.5 EFFECTS OF THE PACKAGE PARASITICS ON THE 
RESONANT FREQUENCY

It is important that the effects of the package parasitics on the resonant fre-
quency are understood [1]. A figure of merit for the varactor-tuned ring will
be its tuning range. The package parameters could greatly affect this tuning
range. It would be useful to know which parasitics degrade the tuning per-
formance so that devices that minimize the parasitics can be used. Likewise it
would be useful to known if any of the parameters enhance the tuning range
so that they can be maximized in the varactor being used. The parasitics that
we are concerned with are those in Figure 4.5, Ls, Lp, Cp, and Rs. The bulk
resistance of the semiconductor, Rs, and Lp and Cp are due to the varactor
packaging.Typical values for Rs, Lp, and Cp are given by manufacturers in their
databooks for a given device and package style. The parameter Ls is the inher-
ent inductance introduced in the circuit due to the package leads and bonding.
This value may become quite large if long lead lines are used. The size of Ls

depends on the application.
The resonant frequency as a function of varactor capacitance has been

plotted for various parameters in Figures 4.12 through 4.15. The ranges for the
parameters are typical values that can be expected for a packaged varactor.
In Figure 4.12 the effect of the package capacitance on the resonant frequency
is displayed. The package capacitance Cp is in parallel with the tuning capac-
itance, Cj. Because capacitances in parallel are added, the effective varactor
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FIGURE 4.12 Effect of Cp on the resonant frequency as it is varied from 0.01 to 0.25pF.



capacitance (neglecting C2) can be written as Cp + Cj. From Figure 4.12 we can
see that for a small varactor junction capacitance the package capacitance can
result in a large change in the resonant frequency, while for a large junction
capacitance, the effect is small. If a package with a large capacitance is used,
then the device capacitance will be dominated by the package capacitance and
the effective capacitance will be a larger number. The small device capaci-
tances will have less of an effect on the resonant frequency, the result being a
smaller tuning range. This is shown in Figure 4.12. As the package capacitance
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FIGURE 4.13 Effect of Lp on the resonant frequency as it is varied from 0.10 to 0.75nH.

FIGURE 4.14 Effect of Ls on the resonant frequency as it is varied from 0.10 to 0.75nH.



is increased while all other parameters remain constant, the frequency tuning
range for a given capacitance range is smaller. To ensure the maximum tuning
range possible, it is important that a package with a small capacitance be
chosen.

The inductance Lp is also introduced in the device package. Figure 4.13
shows the effects of the package inductances on the resonant frequency. As
the inductance is increased, the tuning range is also slightly increased. The
inductance does not degrade the performance of the circuit but seems to
enhance it. This is both novel and convenient. It is generally conceived that all
package parasitics should be minimized in order to maximize the performance
of any circuit, but this is not the case for this application. Many package styles
offer relatively high inductances (as high as 2.0nH). In this varactor applica-
tion the package inductance does not degrade the performance of the circuit
and thus if given a choice, a package with a large inductance should be chosen.

The bonding inductance is not actually a package parasitic in the strictest
sense because it does not lie within the package itself.The inductance Ls arises
from the embedding of the varactor into the circuit. The leads from the device
to the circuit and the bonding of the leads gives rise to Ls. Information on this
inductance cannot be supplied by the vendor because it varies for each appli-
cation. The effect of Ls on the resonant frequency is given in Figure 4.14. The
range of Ls is arbitrarily chosen, but one would expect Ls to be at least com-
parable to Lp because of the physical dimensions involved. As can be seen in
Figure 4.14, the inductance Ls does not degrade the frequency tuning range
and may actually improve it slightly. As the inductance is increased, the whole
tuning curve is lowered. This gives the same effect as increasing the mean cir-
cumference of the ring. Longer bonding wires give rise to a larger inductance
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FIGURE 4.15 Effect of Rs on the resonant frequency as it is varied from 0.0 to 1.0 W.



and a longer single path. The longer signal path increases the mean circum-
ference of the ring, and as would be expected, lowers the resonant frequency.

The effect of the bulk resistance on the resonant frequency is shown in Figure
4.15.As can be seen, the resistance does not affect the resonant frequency of the
circuit. It should be noted that it is important to minimize Rs so that the circuit
Q will be as high as possible and the insertion loss kept as low as possible.

The effect of the package parasitics on the turning range is now known.
From this information a device and package can be chosen so that the fre-
quency tuning range is maximized. The following is a guideline for choosing a
varactor:

1. The tuning capacitance, Cj, should span a large range of junction capac-
itance values.

2. A package should be chosen such that the package capacitance, Cp, is as
small as possible.

3. A package should be chosen such that the package inductance, Lp, is as
large as possible.

4. The bonding wires will not degrade the tuning range, but should be kept
as short as possible so that Ls will be more predictable.

5. The bulk resistance should be as small as possible.

4.6 EXPERIMENTAL RESULTS FOR VARACTOR-TUNED MICROSTRIP
RING RESONATORS

The operation of the varactor-tuned ring resonator has been explained using
transmission-line analysis. An equivalent circuit for the varactor was formed
from considerations of the actual packaged device and incorporated into the
total equivalent circuit for the ring resonator that was verified in Chapter 2.
From this expanded equivalent circuit the frequency response of the varactor-
tuned circuit was observed using the S-parameters. It was shown that the odd
modes should disappear, the even modes remain unaffected, and the newly
introduced half-modes should be tuned by varying the varactor capacitance.
The effects of the package parasitics on the frequency tuning range were also
examined. This allowed the development of guidelines to be followed when
choosing a varactor so the maximum tuning range can be obtained. It is impor-
tant that the theoretical results be verified with experimental data [1, 3].

The first step to verify the theoretical results is to choose a varactor. The
varactors chosen for the circuit were from the MA-46600 series from M/A-
COM. The MA-46600 series comprises gallium arsenide microwave tuning
varactors with an abrupt junction, and feature Q-factors in excess of 4000. A
variety of capacitance ranges are available, which run from 0.5pF to 3.0pF.
Case style 137, which is specifically made for stripline implementation, was
chosen as a package for the varactor. It has leads that may be attached to the
circuit using silver epoxy or solder. Case style 137 is also acceptable from the
guidelines outlined in the previous section. The typical capacitance, Cp, is

112 ELECTRONICALLY TUNABLE RING RESONATORS



quoted as 0.05pF. A value for the package inductance, Lp, is not quoted, but
similar packages have typical values of 1.0nH. Thus we can summarize the
advantages of package style 137 as low package capacitance, high package
inductance, and leads that are easily attached to the microstrip ring.

Various circuits were designed and tested to verify the results using the var-
actors discussed. The results for each circuit tested were consistent, and thus
only one will be presented here. The parameters for one of circuits tested are
as follows:

The actual mask used to manufacture this circuit is given in Figure 4.16.
Note the “bow-tie” configuration on the dc bias lines. The bow tie acts as a
bandstop filter to minimize RF leakage at the designed frequency. The cou-
pling and device gaps may not be distinguishable because they are very small.

The circuit was manufactured and the device gap and dc block capacitance
gap were both filled with a conductive silver epoxy. This gave the effect of a
simple ring resonator. As was expected all modes were present and spaced
approximately an equal distance apart. The silver epoxy was then removed
from the dc block capacitance gap and a 10-pF chip capacitor was soldered
across the gap. Again as would be expected, the odd modes disappeared, the
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FIGURE 4.16 Mask of the experimental varactor-tuned ring.



even modes were unaffected, and the half-modes appeared exactly between
the even and missing odd modes. The silver epoxy was then removed from the
device gap and the varactor was put into place. The even modes remained in
place, and the half-modes shifted slightly lower.

The circuit was then ready for an applied voltage across the varactor. The
voltage on the varactor was varied from +0.85 to -30.0 volts. When the voltage
was varied and thus the capacitance in the circuit changed, the resonant fre-
quency of the half-modes could be controlled. An example of the frequency
response for various applied voltages is given in Figure 4.17. The resonant fre-
quency varies from 2.94GHz at +0.85 volts to 3.20GHz at -30.0 volts. This is
a tuning bandwidth of approximately 9%.

To compare the theoretical predictions and experimental results, the
applied voltage was converted to its corresponding varactor capacitance. This
can be done by using the x-y plot of capacitance versus voltage in Figure 4.3a
and b. Each voltage value corresponds to a measured varactor capacitance.
The measured varactor capacitance also includes the parallel package capac-
itance. To obtain only the varactor capacitance, the package capacitance is 
subtracted from the measured values. Table 4.1 is formed using Figure 4.3a
and b and the experimental applied voltage.
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FIGURE 4.17 Frequency response of the varactor-tuned ring for a bias voltage
ranging, from +0.85 to -30.0.



Once the capacitance at each voltage is known, the resonant frequency can
be plotted as a function of capacitance as in Figure 4.18.Also plotted in Figure
4.18 is the theoretical prediction of the tuning range for Ls = 0.2nH. Fairly
good agreement is shown between the theoretical and experimental results,
From Figure 4.18 it would seem that the measured capacitance values are
approximately 0.20pF larger than the actual values of the varactor. This error
was possibly introduced in the capacitance measurement. Any parallel capac-
itance, such as the capacitance from the leads of the C-V meter, will increase
the overall measured capacitance.

4.7 DOUBLE VARACTOR-TUNED MICROSTRIP RING RESONATOR

The single varactor-tuned ring resonator offers a 9% tuning bandwidth. To
increase the tuning bandwidth the two-varactor ring resonator is proposed 

DOUBLE VARACTOR-TUNED MICROSTRIP RING RESONATOR 115

FIGURE 4.18 Resonant frequency as a function of varactor capacitance for the single
varactor-tuned ring.

TABLE 4.1 Varactor Capacitance Values for the Applied Voltages for the Single
Varactor-Tuned Circuit

Applied Voltage Resonant Frequency Capacitance
(V) (GHz) (pF)

+0.85 2.940 2.40
0.0 3.000 1.35

-2.5 3.075 0.85
-9.0 3.145 0.58

-30.0 3.208 0.44
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FIGURE 4.19 Frequency response of the double varactor-tuned ring for a bias voltage
ranging from +0.90 to -30.0.

[1, 3]. The same circuit that is used for the single varactor can be used for two
varactors. The dc block capacitor is replaced by another varactor. Correct
biasing can still be achieved and an increase in the tuning bandwidth is offered.
The frequency response of a two-varactor circuit is presented in Figure 4.19.
Close comparison with the single-varactor response (Figure 4.17) does indeed
show an increased tuning range.The tuning bandwidth is increased to approxi-
mately 15%. To compare the theoretical and experimental results it was
assumed that the two varactors are identical and then the same procedure 
can be followed as in the single varactor case. The experimental results are 
summarized in Table 4.2.

TABLE 4.2 Varactor Capacitance Values for the Applied Voltages for the Double
Varactor-Tuned Circuit

Applied Voltage Resonant Frequency Capacitance
(V) (GHz) (pF)

+0.9 2.885 2.45
0.0 3.000 1.35

-5.0 3.115 0.69
-15.0 3.225 0.49
-30.0 3.330 0.44



The resonant frequency as a function of tuning capacitance is presented in
Figure 4.20. The agreement of the experimental results and theoretical pre-
dictions is quite good, especially when one considers that the two varactors
were considered to be identical.

4.8 VARACTOR-TUNED UNIPLANAR RING RESONATORS

Varactor diodes can be incorporated into the uniplanar ring resonators to
make the resonant frequencies electronically tunable [7]. Examples are given
here for both slotline and coplanar waveguide ring resonators.

Figure 4.21 shows the CPW-fed slotline ring configuration. A distributed
transmission-line model was used to analyze the slotline ring. A 50-W CPW
line feeds an 85-W slotline ring through a series gap. The gap can be repre-
sented by a capacitor that controls the coupling efficiency into the slotline ring
and is inversely proportional to the gap spacing. The effect of the size of the
coupling gap is shown in Figure 4.22 for two gap sizes of approximately 0.50
and 0.05mm. The 0.05-mm gap reduces the insertion loss by increasing the
coupling into and out of the resonator. The ring has a mean radius of 11.26
mm and uses a 0.50-mm slotline on a 0.63-mm-thick RT/Duroid 6010 substrate.
The relative dielectric constant is 10.5.

The circuit was first tested without the varactor diodes. Figure 4.23a shows
the theoretical and experimental insertion loss for a 0.095-mm gap. The theo-
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FIGURE 4.20 Resonant frequency as a function of a varactor capacitance for the
double varactor-tuned ring.



retical results were obtained based on the distributed transmission-line model
discussed in Chapter 2. The slotline ring is formed by cascading many small
sections of slotlines together. The input coupling gap is approximated using a
small series capacitor. The transmission-line parameters were determined
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FIGURE 4.22 Effect of gap spacing on input/output coupling to slotline ring. Gap 1
is 0.05mm, and gap 2 is 0.50mm [7]. (Permission from IEEE.)

FIGURE 4.21 The varactor-tunable slotline ring configuration [7]. (Permission from
IEEE.)
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FIGURE 4.23 Theoretical vs. measured insertion loss and resonant frequencies of a
slotline ring resonator: (a) insertion loss; (b) return loss [7]. (Permission from IEEE.)



based on formulas in [8, p. 215]. The gap capacitances were determined empir-
ically from measurements. The theoretical results agree fairly well with meas-
urement over a wide bandwidth.The errors for resonant frequencies are within
1.2%. Figure 4.23b shows the return loss that indicates the typical input match-
ing condition.

The varactors located at 90 and 270 degrees along the ring tune the even
modes of the resonator and allow a second mode electronic tuning bandwidth
of 940MHz from 3.13 to 4.07GHz for varactor voltages of 1.35 to 30 volts.
Figure 4.24a shows the experimental results.The first peak is for the first mode,
which is stationary during the electronic tuning. A return loss of 6.4, 7.7, and
8.5dB was achieved for varactor voltages of 5, 10, and 30 volts, respectively.
Improved return loss could be achieved using matching elements at the cou-
pling points. Figure 4.24b shows a comparison between the theoretical and the
actual tuning range with reasonable agreement. The increase in loss as the 
frequency is lowered is due, in part, to a reduction in input/output coupling.
The loss increases linearly from 6dB at 4.07GHz to 11dB at 3.13GHz.

In order to reduce the insertion loss, a 3 ¥ 3 ¥ 0.3-mm capacitive overlay
[9] placed over the input and output of the slotline ring was used to increase
the coupling and reduce the discontinuity radiation. This overlay reduced the
loss and slightly lowered the frequencies of operation due to greater capaci-
tive loading. The tuning bandwidth becomes 3.03 to 3.83GHz. The 800-MHz
tuning range centered at 3.4GHz is shown in Figure 4.25. As shown, the
overlay helps to improve the insertion loss of the tunable resonator, The 23%
tuning range from 3.03 to 3.83GHz has an insertion loss of 4.5dB ± 1.5dB for
varactor voltages of 1.35 to 30 volts. As shown in Figure 4.25, the varactors
have little effect on the first mode of the slotline ring resonator while capaci-
tively tuning the second mode. The 3-dB points on the passband vary from
4.85% at 3.03GHz to 5.17% at 3.83GHz. The insertion loss at ±10% away
from the second mode resonant frequency is about ≥15dB. The increase in
insertion roll-off for the lower frequency end of the tuning range is due to the
stationary third mode.As the varactor bias level is lowered further, the second
mode continues to approach the stationary first mode.

The CPW-fed varactor-tuned CPW ring configuration is shown in Figure
4.26. The CPW ring is divided into many sections and the distributed trans-
mission-line model is used for analysis. Two 50-W CPW lines feed the CPW
ring via a series gap. The ring has a mean diameter of 21mm and uses 0.5-mm
slotlines spaced 1.035mm apart on a 0.635-mm RT/Duroid 6010 substrate with
a relative dielectric constant of 10.5.

Advantages of the CPW ring over the slotline ring are that both series and
shunt devices can be mounted easily along the ring and two shunt varactors
can be placed at each circuit point to increase the tuning range and reduce the
diode real resistance. A varactor and PIN diode can be placed at a single node
to obtain switching and tuning with the same ring resonator.

The varactors located at 90 and 270 degrees along the ring tune the even
modes of the resonator and allow a second resonant mode electronic tuning
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FIGURE 4.24 Varactor tuning of the second resonant mode of a slotline ring 
resonator: (a) measured insertion loss for different varactor voltages; (b) theoretical
vs. measured second resonant mode frequency as a function of varactor voltage [7].
(Permission from IEEE.)

bandwidths of 710MHz from 2.88 to 3.59GHz for varactor voltages of 0 to 30
volts, Figure 4.27a shows the experimental results, and Figure 4.27b shows 
a comparison of theoretical and measured resonant frequency at different 
varactor bias levels. The increase in loss as the frequency is lowered is due, in
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FIGURE 4.26 The varactor-tunable CPW ring configuration [7]. (Permission from
IEEE.)

FIGURE 4.25 Measured varactor tuning range of a slotline ring with dielectric over-
lays over the coupling gaps [7]. (Permission from IEEE.)
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FIGURE 4.27 Varactor tuning of the second resonant mode of a CPW ring resonator:
(a) measured insertion loss for different varactor voltages; (b) theoretical vs. measured
second resonant mode frequency as a function of varactor voltage [7]. (Permission from
IEEE.)

part, to a reduction in input/output coupling. The loss increases linearly from
4dB at 3.59GHz to 10.5dB at 2.88GHz. Although two varactors can be used 
at either point on the ring, only one was used for this investigation. The inser-
tion loss of the CPW ring could be reduced by using a similar dielectric overlay
at the input and output as was used in the slotline ring.



4.9 PIEZOELECTRIC TRANSDUCER TUNED MICROSTRIP 
RING RESONATOR

The piezoelectric transducer (PET) is an electromechanical operation using
electric signals to mechanically control or tune microwave circuits [10–12].
Similar operations using microelectromechanical system (MEMS) can be
found in [13, 14].The PET is a composition of lead, zirconate, and titanate [15].
The PET shown in Figure 4.28 consists of two piezoelectric layers and one
shim layer. The center shim laminated between the two same polarization
piezoelectric layers adds mechanical strength and stiffness. Also, the shim is
connected to one polarity of a DC voltage to deflect the PET and move it up
or down vertically. A dielectric perturber is attached to the PET. This motion
makes it possible to change the effective dielectric constant of the ring 

124 ELECTRONICALLY TUNABLE RING RESONATORS

Dielectric
perturber

Vdc

PET

Port1 Port2

(a) 

Perturber

Vdc

PET

Test fixture

Ring
Resonator

(b) 

FIGURE 4.28 Configuration of the tunable ring resonator using a PET: (a) top view
and (b) 3-dimensional view.



resonator, thus varying resonant frequency of the ring resonator. The PET
can be deflected over +/- 1.325mm at +/- 90V with an applied current of 

1mA.
The ring resonator shown in Figure 4.28 is designed at fundamental of 

5GHz and fabricated at RT/Duroid 5870 with substrate 20mil and dielectric
constant er = 2.33. The dielectric constant of the perturber is er = 10.8. The
measured results shown in Figure 4.29 are for the second mode near 10GHz,
and the tuning range is 2.5GHz with a 28.5% about 10GHz. Inspecting the
results, the radiation and mismatch loss are gradually reduced by overlaying
the dielectric perturber [16].
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CHAPTER FIVE

Electronically Switchable 
Ring Resonators

5.1 INTRODUCTION

It has already been explained that the ring resonator exhibits a bandpass 
frequency response. The modes (or frequencies) that pass through the circuit
are only those whose guided wavelength is an integral multiple of the mean
circumference. The number of wavelengths present on the ring at resonance
defines the mode numbers.There are infinitely many resonant frequencies and
therefore infinitely many mode numbers. From Chapter 3, it is seen that these
modes are not all equally affected when the ring circuit is changed. An
example of this would be when the ring was cut at 90° radially from the feed
point. To satisfy the new boundary conditions the odd-numbered modes dis-
appeared and the new half-modes appeared. If it was possible to repair the
cut so that the ring was complete again, the half-modes would disappear and
the odd modes would reappear again. This idea can be used to develop a
switch/filter [1].

The rind resonator alone acts naturally as a bandpass filter. PIN diodes can
be mounted in the ring to facilitate the mode switching. The result is an elec-
tronic switch/filter. Like other diodes the PIN diode acts as an open circuit
when reverse biased and a short circuit when forward biased. If the diodes are
mounted in the ring resonator across the gaps at f = 90° and 270°, the odd
modes can be switched off and on at will by varying the bias on the diode.
When the diode is forward biased it is as if there are no gaps in the ring and
all integer-numbered (even and odd) modes are passed. When the diode 
is reverse biased, the boundary conditions will not allow the odd-numbered
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modes to propagate, and they will have a high attenuation. So by changing the
diodes from forward to reverse bias the odd modes will disappear. And by
forward biasing the diodes, the odd modes will again appear.

A similar circuit can also be used to switch the half-modes on and off. For
this purpose only one PIN diode is placed at f = 90° and a dc block capacitor
placed at f = 270°. Because the procedure is the opposite of the odd-mode
switching, this could become very confusing, but as will be seen in a later appli-
cation, it is quite important. It may be helpful to refer to the mode chart of
Figure 4.9. When the diode is forward biased, only the even-numbered modes
are present (no half-modes). When the diode is reverse biased, the half-modes
appear due to the boundary conditions (and the odd-numbered modes 
disappear).

As before with the varactor diode, when a PIN diode is mounted in the ring
the resonant frequencies will shift. This shift is due to the impedance intro-
duced by the diode in the circuit. Even when the diode is forward biased (short
circuit) the resonant frequency will be affected by the impedance of the device
package. It is important that the resonant frequency of the circuit for the
forward- and reverse-bias conditions be predictable by some type of analysis.
The most obvious analysis is the transmission-line method. The transmission-
line method has accurately predicted the response of a similar circuit, the 
varactor-tuned ring. The varactor-tuned ring and the switch/filter ring circuit
are identical, except that the varactor and dc block capacitor are replaced by
the PIN diodes. All that is necessary to analyze the switch/filter is to replace
the varactor equivalent circuit by the PIN equivalent and follow the same pro-
cedure described earlier in Chapter 4. Of particular interest will be the reso-
nant frequency of the circuit and the isolation between the on and off states.

5.2 PIN DIODE EQUIVALENT CIRCUIT

To analyze the switchable ring resonators, one will need an equivalent circuit
for the PIN diode [1, 2]. In Chapter 4 it was explained how the depletion region
arises in a PN structure. The depletion region is a result of the Fermi-level
alignment of the P and N regions. With no bias applied the width of the deple-
tion region (so called because it is depleted of carriers or is intrinsic in nature)
depends on the doping of the P and N regions that it separates. It was also
explained how the structure actually represented a two-plate capacitor whose
capacitance was expressed in Equation 4.3. As the width of the depletion
region is increased, the capacitance per unit area of the junction decreases.
The PIN-diode structure is a PN junction separated by an (almost) intrinsic
region. Thus comes the name PIN; P-type Intrinsic N-type. The PIN diode is
merely an extension of the PN diode. When a forward bias is applied to the
PIN, the result is a short circuit as in the PN diode.The difference occurs when
reverse biased. If the PIN diode is reverse biased, the depletion region will
increase and the junction capacitance decreases. Because the PIN structure
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has an added intrinsic region, its depletion region will be larger than the PN
structure. The increased depletion width results in a smaller than normal junc-
tion capacitance when reverse biased. The complex impedance of a capacitor
is represented as

(5.1)

where w is the angular frequency and C is the capacitance. Thus, a smaller
capacitance will result in a larger impedance and a better approximation of
an open circuit. So the purpose of the PIN diode is to better achieve an open
circuit when reverse biased while still representing a short circuit when
forward biased.

To develop an equivalent circuit for the PIN to be used in our analysis we
can draw on the knowledge gained from the varactor in Chapter 4. Both the
varactor and PIN are merely diodes.All diodes can be represented by the same
equivalent circuit. The various parameters for the diodes are cultivated to
improve the performance for a given application. The parameters of the var-
actor are cultivated to give a workable junction capacitance and a low series
resistance. This allows the capacitance of the varactor to be more effectively
used in frequency tuning applications.The PIN, unlike the varactor, is designed
to work as either forward or reverse biased. When forward biased, the series
resistance should be low so that the diode will better represent a short circuit.
When reverse biased, the junction capacitance should be as small as possible
and nearly constant over a wide range of reverse-biased voltages. This allows
the PIN to more effectively represent two distinct states; open circuit (forward
bias) and short circuit (reverse bias).

Because all diodes typically have the same equivalent circuit, Figure 4.5, the
equivalent circuit for the varactor can be used for the PIN. Figure 4.5 repre-
sents a reverse-biased diode. Because the PIN also operates in the forward-
biased condition, Figure 4.5 should be altered to include this state. The
proposed equivalent circuit for the PIN is given in Figure 5.1 [1, 2]. Note that
the circuit can be switched to its two distinct states. In Figure 5.1, Rf is the
series resistance of the forward-biased diode. A typical value for Rf is 1W.
When reverse-biased, Cj represents the junction capacitance and Rr represents
the series resistance. A typical value for Cj is 0.1pF and Rr can be expected to
be approximately 1 W. These values will vary, depending on the PIN applica-
tion and amount of bias current applied. Because very little current passes
when the diode is reverse biased, the value of Rr is not particularly important.
More important is Rf, which is present when large currents may be present.
The other parameters in Figure 5.1 are the package parasitics explained in
Chapter 4. The package style for the PIN may differ from that used for the
varactor, but the equivalent circuit remains the same. Only the parameters
change for a new package style.

Z
j Ccap =

1
w
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5.3 ANALYSIS FOR ELECTRONICALLY SWITCHABLE MICROSTRIP 
RING RESONATORS

The varactor analysis in Chapter 4 can be used to determine the resonant fre-
quency of the PIN-diode ring resonator [1, 3]. In the varactor analysis, the first
step was to propose a model for the circuit. Then an expression for the input
impedance was obtained from the model. The resonant frequency could then
be determined from the input impedance by two methods: solving for the fre-
quency at which the imaginary part of the input impedance equals zero, and
solving for the frequency at which S12 is a maximum. Both methods are equally
correct. This method of analysis yielded reasonably good results for the 
varactor and can be altered slightly to apply to the PIN-diode circuit.

A circuit arrangement similar to the varactor-tuned ring shown in Figure
4.16 can be used for the PIN switch/filter circuit. The total equivalent circuit
for the varactor-tuned ring is given in Figure 4.7. The impedance Ztop and Zbot

represent the varactor diodes for the double varactor-tuned ring. If we let Ztop

and Zbot represent the impedance of the PIN diodes, then the expression for
the overall input impedance given in Equation (4.7) is still valid. An expres-
sion for Ztop and Zbot can be derived from the equivalent circuit for the PIN
diodes given in Figure 5.1. Typical values for the parameters Lp, Cp, Cj, Rf, and
Rr, can be obtained from product databooks.

The resonant frequency can be determined using the same methods out-
lined in Chapter 4. Of particular importance for this circuit will be the para-
meter S12. If the forward-biased condition is considered and an odd-numbered
mode is observed, then S12 will reach a maximum at the resonant frequency.
If the reverse-biased condition is considered, then the odd-numbered modes
will have a much higher attenuation and there will be no resonance. The dif-
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FIGURE 5.1 Equivalent circuit for the packaged PIN diode [3]. (Permission from
IEEE.)



ference in S12 at the resonant frequency for the forward-biased condition and
S12 at the same frequency for the reverse-biased condition is called isolation.
Isolation is a figure of merit for switches. It is desirable to have the “on” signal
level and the “off” signal level as isolated as possible.

As an example, the PIN diodes used are the MA-47047 from M/A COM
Silicon Products. There diodes are medium-power diodes packaged in glass
with case style 54.A value for Cj is quoted as 0.3pF at -50V [4].A typical value
for Rf is 1.3W at 100mA. A value for Rr is not quoted, but other similar diodes
have a resistance of 2 W. The values for the package parameters can be deter-
mined from case style considerations. A value of 0.1pF and 2.0nH is quoted
for Cp and Lp, respectively [5]. The value used for the bonding inductance Ls

is an approximated parameter. The value used in Chapter 4 for the varactor
circuit is 0.2nH. This should also be a reasonable value for the PIN circuit.

5.4 EXPERIMENTAL AND THEORETICAL RESULTS FOR ELECTRONICALLY
SWITCHABLE MICROSTRIP RING RESONATORS

To verify that the varactor analysis can indeed be applied to the PIN switch/
filter, theoretical and experimental results were gathered [1, 3].The circuit was
designed for a RT/Duroid 5880 substrate, which has a relative permittivity of
2.2. The tested circuit is shown in Figure 5.2.

The circuit dimensions were as follows:

The PIN diodes used were the MA-47047 diodes discussed in the previous
section.

The theoretical analysis is shown in Figure 5.3 for the forward- and reverse-
biased diode. For the parameters given the circuit has a resonance at approx-
imately 2.74GHz when the diode is forward biased. When the diode is reverse
biased, there is no resonance present. The isolation is predicted to be greater
than 20dB, which is acceptable for switch applications.The resonant frequency
calculated by simply using the approximation 2pr = nlg is 3.0GHz. This is
approximately a 10% error. Because the forward-biased PIN can be repre-
sented primarily by its package parasitics, it becomes very obvious that the
parasitics significantly affect the resonant frequency.

It should be noted that the theoretical isolation was very dependent on 
the forward-bias resistance value, Rf. An Rf larger than the 1 W used would 

Height = 0.762 mm

Line width = 2.310 mm

Coupling gap = 0.100 mm

Device gap = 0.250 mm

Radius = 3.484 cm
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give less isolation because the resonant peak would not be as sharp. Thus 
it can be concluded that not only should a diode be chosen with a small
reverse-bias junction capacitance, Cj, but a small forward resistance is also
desirable.
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FIGURE 5.2 The PIN switch/filter circuit that was tested.

FIGURE 5.3 Theoretical results for the PIN switch/filter ring.



Testing procedures were carried out on a Hewlett-Packard 8510 network
analyzer. The experimental results are presented in Fig. 5.4. When the diodes
are forward biased with a total current of 400mA, the circuit has a resonance
at 2.69GHz. When the diodes are reversed biased to -50V, the mode is turned
off and there is no resonance.The signal isolation at 2.69GHz when the circuit
is reversed biased is better than 40dB. The 40-dB isolation is excellent for a
switch. The experimental isolation is quite a bit better than the theoretical 
predictions, which is probably due to the smaller than expected forward-bias
resistance and smaller than expected reverse-bias capacitance. This is not at
all unlikely because the predicted values are typical measurements taken at
100MHz. The properties of the semiconductor are frequency dependent. As
the frequency increases, the capacitance and resistance will actually decrease
[4]. The resonant frequency was accurately predicted to within a respectable
2%. Errors in the resonant frequency estimation are more than likely due to
the estimated value of Ls. If Ls were chosen to be 0.4nH, the results would
nearly agree exactly. Using a value of 0.4nH for Ls would be completely 
justified because of the long wire leads extending from the glass package that
are needed to bond the diode in the circuit.

From the experimental results in Fig. 5.4 it can be observed that the circuit
has an insertion loss of 20dB at resonance. The insertion loss in the circuit can
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FIGURE 5.4 Experimental results for the PIN switch/filter ring [3]. (Permission from
IEEE.)



be mainly attributed to radiation loss from the coupling regions of the res-
onator. Even for a very small coupling gap the loss associated with radiation
from the coupling region is very substantial. It has been demonstrated that the
coupling loss can be decreased by using an overlay to cover the radiating open
circuits. By covering the coupling region with a dielectric of permittivity
greater than that of the circuit substrate, the insertion loss resulting from the
coupling region can be decreased dramatically [3, 6]. The result of the overlay
is a larger coupling capacitance that is equivalent to a smaller gap size. The
overlay also results in a lower loaded Q for the circuit. The lower Q results in
a frequency response with a resonance peak that is not as sharp, thus making
this undesirable for frequency measurement applications.

In Chapter 3 it was shown how the resonant frequency of a microstrip ring
resonator was dependent on the size of the coupling gap. As the coupling gap
is decreased, the coupling capacitance increases and the resonant frequency is
lowered. This effect could be predicted because expressions were available to
calculate the coupling capacitance. When an overlay is used to cover the cou-
pling gap, the effect is a much smaller gap size and thus a much larger cou-
pling capacitance. Expressions are not available for the capacitance resulting
from the overlay, so the effect of the overlay on the resonant frequency cannot
be theoretically determined.

To demonstrate the effect of an overlay, a switch/filter circuit was tested
with the coupling gap covered by insulated copper tape. The circuit tested was
the same circuit given in Figure 5.2. The results for the test are given in Figure
5.5. As can be seen, the insertion loss is decreased from 20dB to less than 
5dB at resonance. The resonant frequency is also shifted from 2.74GHz to 
2.6GHz as a result of the increased coupling capacitance. It can then be shown
that for a frequency shift of this amount the coupling gap would have to be
approximately 3 mm, which is not physically realizable.

5.5 VARACTOR-TUNED SWITCHABLE MICROSTRIP RING RESONATORS

A varactor when mounted in a ring resonator circuit was shown to tune the
resonant frequency of what has come to be known as the half-modes [1, 3].
These half-modes arise because the varactor, which represents a high imped-
ance when reverse biased, is almost equivalent to an open circuit at the mount-
ing position. This almost open circuit forces boundary conditions on the ring
that allow the half-modes to appear and odd-numbered modes to disappear.

It was also demonstrated in the previous sections that the half-modes could
be turned off and on by correctly mounting a PIN diode in the circuit. The two
states of the PIN diode, forward and reverse biased, present different bound-
ary conditions on the ring to be satisfied. A forward-biased PIN diode repre-
sents a short circuit, and the circuit behaves as a normal ring resonator with
all integer-numbered modes being present. When the PIN diode is reverse
biased, it represents an open circuit and the frequency response of the circuit
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is similar to the varactor ring; the odd modes disappear and the half-modes
appear.

The novel properties of the varactor-tuned ring and the PIN switch/filter
can be combined in one circuit. This circuit would not only have an elec-
tronically tunable resonant frequency but a resonant frequency that can be
switched on and off. Using the equivalent circuit for the ring resonator, var-
actor diode, and PIN diode described in Chapters 2 and 4, and Section 5.1,
respectively, the frequency response of such a circuit could be determined
using the transmission-line method. The transmission-line method of analysis
has already been used to adequately predict the response of both the varac-
tor-tuned ring and the PIN switch/filter circuit. The same procedure could be
used for the theoretical analysis of this combination circuit.

As an example, a circuit was built with the actual mask for the tunable
switch/filter circuit as given in Figure 5.6. The varactor and PIN are to be
mounted across the gaps cut at 90° radially from the feed lines. Across the
remaining two cuts, large dc block capacitors are to be mounted. These capac-
itors are necessary because the bias on the PIN and varactor will be different.

A theoretical analysis was developed based on the same methods and
equivalent circuits from the previous chapters. The theoretical frequency
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FIGURE 5.5 Theoretical results for the PIN switch/filter ring with a covered coupling
region [3]. (Permission from IEEE.)



response fro the circuit shown in Figure 5.6 is given in Figure 5.7. The partic-
ular mode of interest is the mode n = 3.5. In Figure 5.7 both the forward- and
reverse-biased PIN conditions are considered. When the PIN is forward
biased, the half-mode is present. The voltage across the varactor can then be
varied to adjust the resonant frequency. As the capacitance of the varactor is
decreased, the resonant frequency increases. When the PIN is reverse biased,
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FIGURE 5.6 Mask used for the tunable switch/filter [3]. (Permission from IEEE.)

FIGURE 5.7 Theoretical results for the tunable switch/filter.



the half-mode is turned off. The predicted isolation for the circuit is approxi-
mately 20dB.

Experimental results were gathered to verify the theoretical analysis. A
circuit was manufactured using the mask given in Figure 5.6. A MA 46600 var-
actor and a MA 47047 PIN were mounted in the circuit. Testing procedures
were again carried out on a Hewlett-Packard 8510 network analyzer. The
experimental frequency response is given in Figure 5.8. As can be seen, the
theoretical and experimental results are quite similar.When the PIN is forward
biased, the varactor presents a tuning range from 2.90 to 3.16GHz. This is
approximately a 9% tuning bandwidth. When the PIN is reverse biased, the
mode is turned off and gives approximately a 20-dB isolation, which is what
was predicted.

The theoretical and experimental tuning ranges are given in Figure 5.9. The
results are not in particularly good agreement (error of approximately 3%),
but they do have the same trend with the theoretical results shifted slightly
lower. This error could have come from choosing too large a value for the
approximation of Ls in the theoretical analysis.
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FIGURE 5.8 Experimental results for the tunable switch/filter.
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CHAPTER SIX

Measurement Applications
Using Ring Resonators

6.1 INTRODUCTION

The microstrip ring resonator was first proposed by Troughton [1] for the
measurements of phase velocity and dispersion of microstrip lines. Compared
to the microstrip linear resonator, the microstrip ring resonator does not suffer
from open-ended effects and can be used to give more accurate measurements.
Since its introduction in 1969, the microstrip ring resonator has found 
applications in determining optimum substrate thickness [2], discontinuity
parameters [3], effective dielectric constant and dispersion [4–8], and loss 
and Q-measurements [9–11].

This chapter discusses the measurement applications of using ring res-
onators [12]. Although regular modes are generally used for the measure-
ments, forced modes and split modes can also be used.

6.2 DISPERSION, DIELECTRIC CONSTANT, AND 
Q-FACTOR MEASUREMENTS

The ring circuit is an ideal tool for dispersion, dielectric constant, and Q-factor
measurements [12]. When Troughton first introduced the idea of a microstrip
ring resonator, he described techniques used to measure the phase velocity
and dispersive characteristics of a microstrip line by observing the resonant
frequency of the ring resonator. The ring resonator, shown in Figure 6.1 is
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merely a transmission line formed in a closed loop. The basic circuit consists
of the feed lines, coupling gap, and the resonator. The feed lines couple power
into and out of the resonator. The feed lines are separated from the resonator
by a distance called the coupling gap. The size of the gap should be large
enough such that the fields in the resonator are not appreciably perturbed, yet
small enough to allow adequate coupling of power. This type of coupling is
described in the literature as “loose coupling.”

When Troughton used the resonator for his microstrip measurements, he
assumed that the structure would only support waves that have an integral
multiple of the guided wavelength equal to the mean circumference. This may
be expressed as

(6.1)

where n is the mode number or number of wavelengths on the ring, lg is the
guided wavelength, and r is the mean radius.

There exists in a nondispersive medium a linear relationship between the
frequency and the phase constant or wavenumber, b, where

(6.2)

If the frequency doubles, then likewise the wavenumber doubles. In a disper-
sive medium this is not true. The microstrip line is a dispersive medium.

The dispersion in a microstrip line can be explained by examining the effec-
tive permittivity, eeff. In microstrip the effective permittivity is a measure of the
fields confined in the region beneath the strip. In the case of very narrow lines
or a very low frequency the field is almost equally shared by the air (er = 1)
and the substrate so that, at this extreme,

e eeff  as ª +( ) Æ
1
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1 0r f
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FIGURE 6.1 The microstrip ring resonator.



where er is the relative dielectric of the substrate. For very wide lines or a very
high frequency nearly all of the field is confined to the substrate dielectric, and
therefore at this extreme,

It is therefore obvious that the effective permittivity is frequency dependent,
increasing as the frequency increases.

The effective permittivity is defined as the square of the ratio of the 
velocity in free space, c, to the phase velocity, up, in microstrip, or

(6.3)

For any propagating wave, the velocity is given by the appropriate frequency–
wavelength product. In the microstrip line, the velocity is up = flg. Substituting
for up in Equation (6.3) results in the equation

(6.4)

If we assume that, as in Equation (6.1), any microstrip resonator will only
support wavelengths that are an integral multiple of the total length, then

(6.5)

where lt is the total length of the resonator. Substituting for lg in Equation
(6.4) yields the equation

(6.6)

If the total length of a resonator, the resonance order, n, and the resonant fre-
quency are known, then eeff can be calculated from Equation (6.6).

The accuracy of the dispersion calculation depends on the accuracy of the
measurement of the frequency and the total length of the resonator. Until
1969, frequency measurements were made using linear resonators [13]. The
linear resonator, shown in Figure 6.2, uses open- or short-circuit terminations
to force the bandpass frequency response. Perfect short circuits are hard to
achieve in microstrip circuits, and thus most linear resonators utilize open 
circuits. The open circuit causes radio frequency (RF) power to be radiated.
This radiated power is either lost to the outside in open structures, or may lead
to unwanted cross-coupling between various circuit elements in a closed
housing.

eeff f
nc
flt

( ) = Ê
Ë

ˆ
¯

2

l nl g= l

e
leff f
c

f g

( ) = Ê
ËÁ

ˆ
¯̃

2

e
ueff f
c

p

( ) = Ê
ËÁ

ˆ
¯̃

2

e eeff  as ª Æ •r f

DISPERSION, DIELECTRIC CONSTANT, AND Q-FACTOR MEASUREMENTS 141



The effect of the fringing fields at the open circuit is best accounted for by
considering the line to be somewhat longer electrically. The total length of the
linear resonator can be expressed as

(6.7)

where l is the physical length and leo is the additional length representing the
open circuit. The length of the fringing field can be calculated from

(6.8)

where w and h are the width of the line and the height of the substrate, respec-
tively [4]. If Equation (6.7) is substituted into Equation (6.4), the result is

(6.9)

If Equation (6.8) is substituted into Equation (6.9), then eeff will appear on
both sides of the equation and it is necessary to iterate for the solution. This
in itself makes ring resonators more desirable than linear resonators for 
dispersion measurements.

A figure of merit for resonators is the circuit Q-factor as defined by 
expression.
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FIGURE 6.2 The microstrip linear resonator.



where w0 is the angular resonant frequency, U is the stored energy per cycle,
and W is the average power lost per cycle. The three main losses associated
with microstrip circuits are conductor losses, dielectric losses, and radiation
losses. The total Q-factor, Q0, can be expressed as

(6.11)

where Qc, Qd, and Qr are the individual Q-values associated with the conduc-
tor, dielectric, and radiation losses, respectively [14].

For ring and linear resonators of the same length, the dielectric and 
conductor losses are equal and therefore Qc and Qd are equal.The power radi-
ated, Wr, is higher for the linear resonator. This results in a lower Qr for 
the linear resonator relative to the ring. We can conclude that because Qc and
Qd are equal for the two resonators, and that Qr is higher for the ring, that the
ring resonator has a higher Q0.

The unloaded Q, Q0, can also be determined by measuring the loaded Q-
factor, QL, and the insertion loss of the ring at resonance. Figure 6.3 shows a
typical resonator frequency response. The loaded Q of the resonator is

(6.12)

where w0 is the angular resonant frequency and w1 - w2 is the 3-dB bandwidth.
Normally a high QL is desired for microstrip measurements. A high QL

requires a narrow 3-dB bandwidth, and thus a sharper peak in the frequency
response. This makes the resonant frequency more easily determined.

The unloaded Q-factor can be calculated from
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(6.13)

where L is the insertion loss in dB of the ring at resonance [2]. Because the
ring resonator has a higher Q0 and lower insertion loss than the linear res-
onator, it will also have a higher loaded Q, QL. Therefore the ring resonator
has a smaller 3-dB bandwidth and sharper resonance than the linear resonator.
This also makes the ring more desirable for microstrip measurements.

Troughton recognized the disadvantages associated with using the linear
resonators for measurements and introduced the ring resonator in 1969 [1].
He proposed that the unknown effects of either open- or short-circuit cavity
terminations could be avoided by using the ring in dispersion measurements.
The equation to be used to calculate dispersion can be found by combining
Equations (6.1) and (6.4) to yield

(6.14)

Any ill effect introduced by the ring that might falsify the measured value
of wavelength or dispersion can be reduced by correctly designing the circuit.
There are five sources of error that must be considered:

a. Because the transmission line has a curvature, the dispersion on the ring
may not be equal to the straight-line dispersion.

b. Field interactions across the ring could cause mutual inductance.
c. The assumption that the total effective length of the ring can be calcu-

lated from the mean radius.
d. The coupling gap may cause field perturbations on the ring.
e. Nonuniformities of the ring width could cause resonance splitting.

To minimize problems (a) through (d) only rings with large diameters
should be used. Troughton used rings that were five wavelengths long at the
frequency of interest. A larger ring will result in a larger radius of curvature
and thus approach the straight-line approximation and diminish the effect of
(a). The large ring will reduce (b) and the effect of (d) will be minimized
because the coupling gap occupies a smaller percentage of the total ring. The
effect of the mean radius, (c), can be reduced by using large rings and narrow
line widths.

An increased ring diameter will also increase the chance of variations in the
line width, and the possibility of resonance splitting is increased. The only way
to avoid resonance splitting is to use precision circuit processing techniques.

Troughton used another method to diminish the effect of the coupling gap.
An initial gap of 1 mil was designed. Using swept frequency techniques, Q-
factor measurements were made.The gap was etched back until it was obvious
that the coupling gap was not affecting the frequency.
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The steps Troughton used to measure dispersion can be summarized as
follows:

1. Design the ring at least five wavelengths long at the lower frequency of
interest.

2. Minimize the effect of the coupling gap by observing the Q-factor and
etching back the gap when necessary.

3. Measure the resonant frequency of each mode.
4. Apply Equation (6.4) to calculate eeff.
5. Plot eeff versus frequency.

This technique was very important when it was introduced because of the
very early stage that the microstrip transmission line was in. Because it was in
its early stage, there had been little research that resulted in closed-form
expressions for designing microstrip circuits. This technique allowed the fre-
quency dependency of eeff to be quickly measured and the use of microstrip
could be extended to higher frequencies more accurately.

6.3 DISCONTINUITY MEASUREMENTS

One of the most interesting applications of the ring is its use to characterize
equivalent circuit parameters of microstrip discontinuities [3, 12]. Because 
discontinuity parameters are usually very small, extreme accuracy is needed
and can be obtained with the ring resonator.

The main difficulty in measuring the circuit parameters of microstrip dis-
continuities resides in the elimination of systematic errors introduced by the
coaxial-to-microstrip transitions. This problem can be avoided by testing dis-
continuities in a resonant microstrip ring that may be loosely coupled to test
equipment. The resonant frequency for narrow rings can be approximated
fairly accurately by assuming that the structure resonates if its electrical length
is an integral multiple of the guided wavelength.When a discontinuity is intro-
duced into the ring, the electric length may not be equal to the physical length.
This difference in the electric and physical length will cause a shift in the res-
onant frequency. By relating the Z-parameters of the introduced discontinu-
ity to the shift in the resonance frequency the equivalent circuit parameters
of the discontinuity can be evaluated.

It has also been explained that the TMn10 modes of the microstrip ring are
degenerate modes.When a discontinuity is introduced into the ring, the degen-
erate modes will split into two distinct modes. This splitting can be expressed
in terms of an even and an odd incidence on the discontinuity. The even case
corresponds to the incidence of two waves of equal magnitude and phase. In
the odd case, waves of equal magnitude but opposite phase are incident from
both sides. Either mode, odd or even, can be excited or suppressed by an
appropriate choice of the point of excitation around the ring.
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A symmetrical discontinuity can be represented by its T equivalent circuit
expressed in terms of its Z-parameters. The T equivalent circuit is presented
in Figure 6.4. For convenience the circuit is divided into two identical half-
sections of zero electrical length. If this circuit is excited in the even mode, it
is as if there is an open circuit at the plane of reference z = 0. The normalized
even input impedance at either port is thus Zie = Z11 + Z12 (see Figure 6.5a).
If this circuit is excited in the odd mode, it is as if there is a short circuit at the
plane z = 0. The normalized odd input impedance is thus Zio = Z11 - Z12 (see
Figure 6.5b). If the discontinuity is lossless, only the resonance frequencies of
the perturbed ring are affected since the even and odd impedances are purely
reactive. The artificial increase or decrease of the electrical length of the ring,
resulting in the decrease of its resonance frequencies, is related to the even
and odd impedances by the following expressions:

(6.15)

(6.16)Z Z Z j klio o= - =11 12 tan

Z Z Z j klie e= + = -11 12 cot

146 MEASUREMENT APPLICATIONS USING RING RESONATORS

FIGURE 6.4 T equivalent circuit of a discontinuity expressed in terms of its 
Z-parameters.

FIGURE 6.5 (a) Impedance of a discontinuity with an even-mode incidence, and (b)
the impedance of a discontinuity with an odd-mode incidence.



where k = 2p/lg is the propagation constant, and le and lo are the artificial 
electrical lengths introduced by the even and odd discontinuity impedances.
Since at resonance the total electrical length of the resonator is nlg, the 
resonance conditions are, in the even case,

(6.17)

and in the odd case,

(6.18)

where lring is the physical length of the ring, and lge and lgo are the guided wave-
lengths to the even and odd resonance frequency, respectively. Since lring is
known and lg can be obtained from measurements, le and lo can be determined
from Equations (6.17) and (6.18). The parameters Z11 and Z12 can be deter-
mined by substituting Equations (6.17) and (6.18) into Equations (6.15) and
(6.16) to yield [3]

(6.19)

(6.20)

where lg was replaced by

and fre and fro are the measured odd and even resonant frequencies of the 
perturbed ring.

The procedure described can be altered slightly and used to evaluate lossy
discontinuities. Instead of the even an odd modes having open or short 
circuits at the plane of reference, z = 0, there is introduced a termination 
resistance. The termination resistance can be determined by measuring the
circuit Q-factor.

6.4 MEASUREMENTS USING FORCED MODES OR SPLIT MODES

As shown earlier, the guided wavelength of the regular mode can be easily
obtained from physical dimensions. Because of this advantage, the regular
mode has been widely used to measure the characteristics of microstrip 
line. The forced modes and split modes, however, can also be applied for such
measurements [15].
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6.4.1 Measurements Using Forced Modes

The forced mode phenomenon was studied previously in Chapter 3. The
shorted forced mode, as illustrated in Figure 6.6 with shorted boundary 
condition at 90°, is now used to measure the effective dielectric constant of
microstrip line. The standing-wave patterns of this circuit is shown in Figure
6.7. According to the design rule mentioned in Chapter 3, the shorted forced
modes contains full-wavelength resonant modes with odd integer mode
numbers and excited half-wavelength modes with mode number n = (2m ± 1)/2,
where m = 1, 3, 5, . . . . The guided wavelength of each resonant mode can be
calculated by applying Equation (6.1). The resonant frequencies of each res-
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FIGURE 6.6 Coupled annular circuit with short plane at qss = 90°.

FIGURE 6.7 Standing wave patterns of the shorted forced mode.
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FIGURE 6.8 Effective dielectric constants vs. resonant frequency for the forced mode
and regular mode.

onant mode can be measured with an HP8510 network analyzer. The effective
dielectric constants for the different resonant frequencies are determined by
the following equation:

(6.21)

where l0 is the wavelength in free space and lg is the guided wavelength.
Figure 6.8 displays the effective dielectric constants versus frequency that were
calculated by the forced mode and regular mode. A comparison of these two
results shows that the excited half-wavelength resonant modes have higher
dielectric constants than the full-wavelength modes. This phenomenon reveals
that the excited half-wavelength modes travel more slowly than the full-
wavelength modes inside the annular element.

6.4.2 Measurements Using Split Modes

The idea of using the split mode for dispersion measurement was introduced
by Wolff [16]. He used notch perturbation for the measurement and found that
the frequency splitting depended on the depth of the notch. The experimen-
tal maximum splitting frequency was 53MHz. Instead of using the notch 

e l leff = ( )0
2

g



perturbation, the local resonant split mode is developed to do the dispersion
measurement. As illustrated in Figure 6.9, a 60° local resonant sector (LRS)
was designed on the symmetric coupled annular ring circuit. The test circuit
was built on a RT/Duroid 6010.5 substrate with the following dimensions:
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FIGURE 6.9 Layout of annular circuit with 60° LRS resonant sector.

FIGURE 6.10 |S21| vs. frequency for the first six resonant modes of Figure 6.9.
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FIGURE 6.11 Splitting frequency vs. width of the 60° LRS.

According to the analysis in Chapter 3, the resonant modes with mode
number n = 3m, where m = 1, 2, 3, . . . , will not split. Figure 6.10 illustrates the
nondisturbed third and sixth resonant modes and the other four split resonant
modes that agree with the prediction of standing-wave pattern analysis.

By increasing the perturbation width the frequency-splitting effect will
become larger. Figure 6.11 displays the experimental results of the depend-
ence of splitting frequency on the width of the LRS. The largest splitting fre-
quency shown in Figure 6.11 is 765MHz for the LRS with 3.5mm width. The
use of the local resonant split mode is more flexible than the notch perturba-
tion. The local resonant split mode can also be applied to the measurements
of step discontinuities of microstrip lines [17].

Substrate thickness = 0.635mm

Line width = 0.6mm

LRS line width = 1.1mm

Coupling gap = 0.1mm

Ring radius = 6mm
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CHAPTER SEVEN

Filter Applications

7.1 INTRODUCTION

As shown in the previous chapters, the ring resonator has bandpass charac-
teristics. If a ring resonator is coupled to input and output transmission lines,
the signal will pass through with certain losses at the resonant frequencies of
the ring and will be rejected at frequencies outside the resonant frequencies.
By cascading several ring resonators in series, various bandpass filtering char-
acteristics can be designed.As discussed in Chapters 2 and 3, the ring resonator
can support two degenerate modes if both modes are excited. This forms the
base for a compact dual-mode filter. The ring resonators could be designed in
microstrip line, slotline, or coplanar waveguide. The ring cavities can be built
in waveguides.

7.2 DUAL-MODE RING BANDPASS FILTERS

As described in Chapters 2 and 3, the dual-mode effects are introduced either
by skewing one of the feed lines with respect to the other or by introduction
of a discontinuity (notch, slit, patch, etc.). The dual-mode bandpass filter was
first proposed by Wolff using asymmetric coupling feed lines [1]. Later on,
many new configurations using orthogonal feed lines with patch perturbation
on a ring resonator were introduced [2–5]. The new configuration with orthog-
onal feed lines and patch perturbation provides a quasi-elliptic function that
has two transmission zeros close to the passband. This property can be used
to reject adjacent channel interferences.

Figure 7.1 shows a dual-mode filter. The square ring resonator is fed by a
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pair of orthogonal feed lines, and each feed line is connected to an L-shape
coupling arm [6]. Figure 7.1b displays the scheme of the coupling arm that con-
sists of a coupling stub and a tuning stub. The tuning stub attached to the end
of the coupling stub extends the coupling stub to increase the coupling periph-
ery. In addition, the asymmetrical structure perturbs the field of the ring res-
onator and excites two degenerate modes [1]. Without the tuning stubs, there
is no perturbation on the ring resonator and only a single mode is excited [7].
Comparing the filter in Figure 7.1 with conventional dual-mode filters [1], the
conventional filters only provide a dual-mode characteristic without the ben-
efits of enhanced coupling strength and performance optimization.

The filter was designed at the center frequency of 1.75GHz and fabricated
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on a 50-mil thickness RT/Duroid 6010.2 substrate with a relative dielectric
constant of 10.2. The length of the tuning stubs is lt, and the gap size between
the tuning stubs and the ring resonator is s. The length of the feed lines is lf =
8mm; the width of the microstrip line is w = 1.191mm for a 50-ohm line; the
length of the coupling stubs is lc = 18.839 + smm; the gap size between the ring
resonator and coupling stubs is g = 0.25mm; the length of one side of the
square ring resonator is l = 17.648mm. The coupling gap g was selected in con-
sideration of strong coupling and etching tolerance. The simulation was com-
pleted using an IE3D electromagnetic simulator [8].

By adjusting the length lt and gap size s of the tuning stubs adequately, the
coupling strength and the frequency response can be optimized. Single-mode
excitation (Figure 7.2) or dual-mode excitation (Figure 7.3) can be resulted by
varying s and lt. Figures 7.2 and 7.3 show the measured results for five cases
from changing the length lt of tuning stubs with a fixed gap size (s = 0.8mm)
and varying the gap size s with a fixed length (lt = 13.5mm). Observing the
measured results in Figure 7.2, two cases for lt = 4.5 and 9mm with a fixed gap
size only excite a single mode.

The coupling between the L arms and the ring can be expressed by exter-
nal Q (Qe) as follows [9]:

(7.1a)

(7.1b)

where QL is the loaded Q, Qo is the unloaded Q of the ring resonator, fo is the
resonant frequency, (Df)3dB is the 3-dB bandwidth, and L is the insertion loss
in decibel. The loaded Q is obtained from measurement of fo and (Df)3dB and
unloaded Q (Qo = 137) is calculated from the Equation (7.1b). From Equation
(7.1a), Qe is given by

(7.2)

The performance for these two single-mode ring resonators is shown in Table
7.1.

The coupling coefficient between two degenerate modes is given by  [10]
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where fp1 and fp2 are the resonant frequencies. In addition, the midband inser-
tion loss L corresponding to Qo, Qe, and K can be expressed as [9]
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FIGURE 7.2 Measured (a) S21 and (b) S11 by adjusting the length of the tuning stub
lt with a fixed gap size (s = 0.8mm) [6]. (Permission from IEEE.)
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FIGURE 7.3 Measured (a) S21 and (b) S11 by varying the gap size s with a fixed length
of the tuning stubs (lt = 13.5mm) [6]. (Permission from IEEE.)

TABLE 7.1 Single-Mode Ring Resonator [6]. (Permission from IEEE.)

Case l: ll = 4.5 mm Case 2: ll = 9 mm
s = 0.8 mm s = 0.8 mm

Resonant Frequency fo 1.75 GHz 1.755 GHz
Insertion Loss IL 2.69 dB 0.97 dB
3-dB Bandwidth 70 MHz 150 MHz
Loaded Q 25 11.7
External Q 61.16 25.58



The external Q can be obtained from Equation (7.4) through measured L, K,
and Qo. Moreover, the coupling coefficient between two degenerate modes
shows three different coupling conditions.

(7.5)

If the coupling coefficient satisfies K > Ko, then the coupling between two
degenerate modes is overcoupled. In this overcoupled condition, the ring res-
onator has a hump response with a high insertion loss in the middle of the
passband [5]. If K = Ko, the coupling is critically coupled. Finally, if K < Ko, the
coupling is undercoupled. For both critically coupled and undercoupled cou-
pling conditions, there is no hump response. Also, when the coupling becomes
more undercoupled, the insertion loss in the passband increases [9]. The per-
formance for the dual-mode ring resonators is displayed in Table 7.2.

Observing the single-mode ring in Table 7.1, it shows that a higher external
Q produces higher insertion loss and narrower bandwidth. In addition, for the
dual-mode ring resonator in Table 7.2, its insertion loss and bandwidth depend
on the external Q, coupling coefficient K, and coupling conditions. For an
undercoupled condition, the more undercoupled, the more the insertion loss
and the narrower the bandwidth.To obtain a low insertion-loss and wide-band
pass band characteristic, the single-mode ring resonator should have a low
external Q, which implies more coupling periphery between the feeders and
the ring resonator.

Figure 7.4 shows the simulated and measured results for the optimized
quasi-elliptic bandpass filter. Two transmission zeros locate on either side of
the passband to suppress unwanted adjacent channel interferences. The filter
has an insertion loss of 1.04dB in the passpband with a 3-dB bandwidth of
192.5MHz.

Let K Q Qo e o= +1 1 .
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TABLE 7.2 Dual-Mode Ring Resonator [6]. (Permission from IEEE.)

Case l: Case 2: Case 3:
ll = 13.5 mm ll = 13.5 mm ll = 13.5 mm
s = 0.3 mm s = 0.5 mm s = 0.8 mm

Resonant Frequencies (1.72, 1.855) GHz (1.7, 1.84) GHz (1.67, 1.81) GHz
(fp1, fp2)

Coupling Coefficient 0.075 0.078 0.08
K

External Q 6.24 7.9 9.66
Midband Insertion 2.9 dB 1.63 dB 1.04 dB

Loss IL
3-dB Bandwidth 160 MHz 175 MHz 192.5 MHz
Coupling Condition undercoupled undercoupled undercoupled



Cascaded multiple ring resonators have advantages in acquiring a much
narrower and shaper rejection. Figure 7.5 illustrates the filter using three cas-
caded ring resonators. Any two of three resonators are linked by an L-shape
arm with a short transmission line le of 6.2mm with a width w1 = 1.691mm.
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FIGURE 7.4 Simulate and measured results for the case of lt = 13.5mm and s =
0.8 mm [6]. (Permission from IEEE.)
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FIGURE 7.5 Layout of the filter using three resonators with L-shape coupling arms
[6]. (Permission from IEEE.)



This bandpass filter was built based on the lt = 13.5mm and s = 0.8mm case
of the single ring resonator of Figure 7.1. Each filter section has identical
dimensions as that in Figure 7.1. The energy transfers from one ring resonator
through the coupling and tuning stubs (or an L-shape arm) and the short trans-
mission line to another ring resonator. Observing the configuration for the L-
shape and the short transmission line le in Figure 7.6, it not only perturbs the
ring resonator, but also it can be treated as a resonator. A short transmission
line lc of 6.2mm with a width w1 = 1.691mm connects to the coupling stubs to
link the two ring resonators.

Considering this type resonator in Figure 7.6a, it is consisted of a transmis-
sion line le and two parallel-connected open stubs. Its equivalent circuit is
shown in Figure 7.6b. The input admittance Yin is given by

Yin1 = jYo[tan(bla) + tan(bla)], b: phase constant
Yl = 1/Zl, Yo = 1/Zo. (7.6)

Y1 is the characteristic admittance of the transmission line le, and Yo is the 
characteristic admittances of the transmission lines la, and lb. Letting Yin = 0,
the resonant frequencies of the resonator can be predicted. The resonant fre-

Y Y Y
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FIGURE 7.6 Back-to-back L-shape resonator (a) layout and (b) equivalent circuit.
The lengths la and lb include the open end effects.



quencies of the resonator are calculated as fo1 = 1.067, fo2 = 1.654, and fo3 =
2.424GHz within 1–3GHz. To verify the resonant frequencies, an end-to-side
coupling circuit is built as shown in Figure 7.7.

Also, the measured resonant frequencies can be found as fmo1 = 1.08, fmo2 =
1.655, and fmo3 = 2.43GHz, which show a good agreement with calculated
results. Inspecting the frequency responses in Figures 7.6 and 7.7, the spike at
fmo3 = 2.43GHz is suppressed by the ring resonators and only one spike appears
at low frequency ( fmo1 = 1.08GHz) with a high insertion loss, which dose not
influence the filter performance. Furthermore, the resonant frequency ( fmo2 =
1.655GHz) of the resonator in Figure 7.6 couples with the ring resonators.
By changing the length le, the resonant frequencies will move to different loca-
tions. For a shorter length le, the resonant frequencies move to higher fre-
quency and for a longer length le, the resonant frequencies shift to lower
frequency. Considering the filter performance, a proper length le should be
carefully chosen. The simulated and measured results of the three cascaded
ring filter are shown in Figure 7.8. The filter has a measured insertion loss of
2.39dB in the passpband with a 3-dB bandwidth of 145MHz.

7.3 RING BANDSTOP FILTERS

The bandstop characteristic of the ring circuit can be realized by using two
orthogonal feed lines with coupling gaps between the feed lines and the ring
resonator [11]. For odd-mode excitation, the output feed line is coupled to a
position of the zero electric field along the ring resonator and shows a short
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circuit [12]. Therefore, no energy is extracted from the ring resonator, and the
ring circuit provides a stopband. A ring resonator directly connected to a pair
of orthogonal feed lines is shown in Figure 7.9 [13]. In this case, no coupling
gaps are used between the resonator and the feed lines for low insertion loss.
The circumference lr of the ring resonator is expressed as

(7.7)

where n is the mode number and lg is the guided wavelength. In order to inves-
tigate the behavior of this ring circuit, an EM simulator [8] and a transmission
line model are used.

l nr g= l

162 FILTER APPLICATIONS

S11

S12

3.02.52.01.51.0
Frequency (GHz)

-80

-60

-40

-20

0
M

ag
ni

tu
de

(d
B

) Measurement

Simulation

FIGURE 7.8 Simulated and measured results for the filter using three resonators with
L-shape coupling arms [6]. (Permission from IEEE.)

Input

Output

lf

lr = n gl

w1

l

FIGURE 7.9 A ring resonator using direct-connected orthogonal feeders [12].
(Permission from IEEE.)



Figure 7.10 shows the EM simulated electric current distribution of the ring
circuit and a conventional lg/4 open-stub bandstop filter at the same funda-
mental resonant frequency.The arrows represent the electric current.The sim-
ulated electric current shows minimum electric fields at positions A and B,
which correspond to the maximum magnetic fields. Thus, both circuits provide
bandstop characteristics by presenting zero voltages to the outputs at the fun-
damental resonant frequency that can be observed by their simulated fre-
quency response of S21 as shown in Figure 7.11.

The ring resonator and the conventional lg/4 open-stub bandstop filter are
designed at a fundamental resonant frequency of fo = 5.6GHz and fabricated
on a RT/Duriod 6010.2 substrate with a thickness h = 25mil and a relative
dielectric constant er = 10.2. The dimensions of the ring are lf = 5mm, lr =
20.34mm, and w1 = 0.6mm.
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The equivalent ring circuit shown in Figure 7.12 is divided by the input and
output ports to form a shunt circuit denoted by the upper and lower parts,
respectively.

The equivalent circuits of the 45-degree-mitered bend are represented by
two inductors L and a capacitor C [14] those are expressed by

(7.8a)

(7.8b)

where h and w1 are in millimeters. The capacitance jBT is the T-junction effect
between the feed line and the ring resonator [15]. The frequency response of
the ring circuit can be calculated from the equivalent ring circuit using ABCD,
Y, and S parameters. Figure 7.13 shows the calculated and measured results
with good agreement.

7.4 COMPACT, LOW INSERTION LOSS, SHARP REJECTION, AND
WIDEBAND BANDPASS FILTERS

Figure 7.14 shows a compact, low insertion loss, sharp rejection, wideband
microstrip bandpass filter. This bandpass filter is developed from the bandstop
filter introduced in Section 7.3 [13]. Two tuning stubs are added to the band-
stop filter to create a wide passband.Without coupling gaps between feed lines
and rings, there are no mismatch and radiation losses between them [16].Thus,
the filter can obtain a low insertion loss, and the major losses of the filter 
are contributed by conductor and dielectric losses. In Figure 7.14, the ring 
resonator is loaded with two tuning stubs of length lt = lg/4 at F = 90° and 
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F = 0°. Yt is the admittance looking into the tuning stub and can be expressed 
by

(7.9)

where Yo is the characteristic admittance of the tuning stub, b is the propaga-
tion constant, and lopen is the equivalent open-effect length [17]. The frequency
response of the ring circuit can be obtained from the equivalent circuit by
using ABCD, Y, and S parameter calculations.

By changing the lengths of two tuning stubs, the frequency response of the
ring circuit will be varied. Observing the calculated results in Figure 7.15, two
attenuation poles starting from the center frequencies of the fundamental and
the third modes move to the lower frequencies and form a wide passband. The
measured and calculated results of the filter with the tuning stubs of length
lg/4 are shown in Figure 7.16. In addition, due to the symmetric structure, the
ring circuit in Figure 7.14 only excites a single mode.

Observing the results in Figure 7.16, the effects of adding two tuning 
stubs with a length of lt = lg/4 at F = 90° and F = 0° provide a sharper cutoff
frequency response, increase attenuations, and obtain a wide passband. Two
attenuation poles are at f1 = 3.81GHz with -46-dB rejection and f2 = 7.75GHz
with -51-dB rejection. The differences between the measurement and the cal-
culation on f1 and f2 are due to fabrication tolerances that cause a slightly
asymmetric layout and excite small degenerate modes.

The key point behind this new filter topology is that two tuning stubs loaded
on the ring resonator at F = 90° and F = 0° are used to achieve a wide pass-
band with a sharp cutoff characteristic. In some cases, an undesired passband

Y Y l l jBt o t open T= +( )[ ]+tanh b 1



below the main passband may require a high passband section to be used in
conjunction with this approach.

In Figure 7.16, the two stopbands of the filter show a narrow bandwidth. To
increase the narrow stopbands, a dual-mode design can be used [4]. A square
perturbation stub at F = 45° is incorporated on the ring resonator in Figure
7.17a. The square stub perturbs the fields of the ring resonator so that the res-
onator can excite a dual mode around the stopbands in order to improve the
narrow stopbands. By increasing (decreasing) the size of the square stub, the
distance (stopband bandwidth) between two modes is increased (decreased).
The equivalent circuits of the square stub and the filter are displayed in Figure
7.17b and c, respectively. As seen in Figure 7.17b, the geometry at the corner
of F = 45° is approximately equal to the square section of width w1 + wp, sub-
tracting an isometric triangle of height w1. Also, the equivalent L-C circuit of
this approximation is shown in Figure 7.17c, where Cpf = Cr - C and Lp = LLr/
(L - Lr). The equivalent capacitance and inductance of the right angle bend,
Cr and Lr, are given by [14]

(7.10a)

(7.10b)

The asymmetric step capacitance Cs is [18]
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In the above equations, all lengths are in millimeters. The length of the tuning
stubs and the size of the square stub are lt1 = 4.83mm and wp ¥ wr = 0.5 ¥
0.5mm2.

The calculated and measured results of the filter are shown in Figure 7.18.
The square stub generates two transmission zeros (which are marked as x in
Figure 7.18) or dual modes located on either side of the passband at 3.66, 7.62
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and 7.62, 8.07GHz, respectively. Comparing S21 with that in Figure 7.16, the
dual-mode effects or transmission zeros increase the stopband bandwidth 
and improve the return loss in the edges of the passband. The filter has 3-dB
fractional bandwidth of 51.6%, an insertion loss of better than 0.7dB, two
rejections of greater than 18dB within 3.43–4.3GHz and 7.57–8.47GHz, and
an attenuation rate for the sharp cutoff frequency responses of 137.58dB/GHz
(calculated from 4.173GHz with -36.9dB to 4.42GHz with -2.85dB) and
131.8dB/GHz (calculated from 7.44GHz with 3.77dB to 7.62GHz with 
-27.5dB). In addition, comparing this filter with some compact and low inser-
tion loss filters [19, 20], those filters only show gradual rejections. To obtain a
sharp cutoff frequency response, the filters need to increase the number of res-
onators. However, increasing the number of resonators will increase the inser-
tion loss and the size of the filter and result in narrow passband bandwidth
[21, 22].

To obtain even higher rejection, a filter using three cascaded ring resonators
is shown in Figure 7.19. In this configuration, the three ring resonators are con-
nected by a short transmission line of length lc = lg/4 = 4.89mm. The different
length lt2 = 4.85mm, lt3 = 4.88mm, and lt4 = 4.83mm for the tuning stubs are
optimized for a good return loss.

Figure 7.20 shows the calculated and measured results. The calculation also
uses the transmission-line model with ABCD, Y, and S parameter operations.
The 3-dB fractional bandwidth of the filter is 49.3%. The filter has an inser-
tion loss better than 1.6dB and return loss greater than 13.3dB in the pass-
band from 4.58 to 7.3GHz. Two stopbands are located at 2.75–4.02GHz and
7.73–9.08GHz with rejection greater than 40dB. The attenuation rate of the
filter for the sharp cutoff frequency responses is 99.75dB/GHz (calculated
from 4.17GHz with -34.9dB to 4.49GHz with -2.98dB) and 101.56dB/GHz
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(calculated from 7.32GHz with -3.4dB to 7.64GHz with -35.9dB). The group
delay of this wideband bandpass filter can be calculated by

(7.12)

where �S21 is the insertion loss phase and w is the frequency in radians per
second. Figure 7.21 shows the group delay of the filter. Within the passband,
the group delay is below 2nS.
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7.5 RING SLOW-WAVE BANDPASS FILTERS

The conventional slow-wave bandpass filter using a microstrip line periodi-
cally loaded by capacitive or inductive loads. As shown in Figure 7.22a [16], a
transmission line is periodically loaded with identical open stub elements.
Each unit element includes a length of d transmission line with a length of l
open stub, where Zin1 is the input impedance looking into the open stub.

The conventional slow-wave periodic structure usually works as a lowpass
or stopband filter [23, 24]. Also, using higher order modes, the conventional
slow-wave periodic structure can act as a wide band bandpass filter, by con-
structing two consecutive stopbands close to the passband [25]. Considering
the slow-wave periodic structure in Figure 7.22b, a loading impedance ZL is
connected at the end of the open stub. The input impedance Zin2 is given by

(7.13)

where Zo and b are the characteristic impedance and phase constant of the
open stub, respectively. If ZL = • or 0 with a very small value of tan(bl), the
input impedance Zin2 Æ • or 0, respectively. Under these cases, the slow-wave
periodic structure loaded by Zin2 in Figure 7.22b provides passband (Zin2 Æ •)
and stopband (Zin2 Æ 0) characteristics. For example, the conventional 
capacitance-load Kuroda-identity periodic structure is the case of ZL = • with
l = lg/8 [26].

Figure 7.23 shows lossless parallel and series resonant circuits. At reso-
nance, the input impedance ZLC of the parallel and series resonant circuits is
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• and 0, respectively. The input impedance ZLC of the resonant circuits can act
as the loading impedance ZL in Figure 22b for the passband and stopband
characteristics of a slow-wave periodic structure. In practice, for the high Q
ring and hairpin resonators, the input impedance of the resonators shows very
large and small values at parallel and series resonant frequencies, respectively.
Thus, a slow-wave periodic structure loaded by ring or hairpin resonators with
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two series resonant frequencies close to a parallel resonant frequency [27] can
be designed for a bandpass filter at fundamental mode.

The key point behind this new slow-wave filter topology is that both the
series and the parallel resonances of the loading circuit are used to achieve
bandpass characteristics. The approach can, in fact, be interpreted as using 
the stop bands of two series resonances in conjunction with the pass band of
a parallel resonance to achieve a bandpass frequency response. It is noted,
however, that in some cases, undesired pass bands below and above the main
pass band may require a high pass or bandpass section to be used in conjunc-
tion with this approach.

Figure 7.24 shows a transmission line loaded by a square ring resonator with
a line-to-ring coupling structure and its simple equivalent circuit, where Zin3 is
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FIGURE 7.24 Slow-wave bandpass filter using one ring resonator with one coupling
gap (a) layout and (b) simplified equivalent circuit [16]. (Permission from IEEE.)



the input impedance looking into the transmission line lb toward the ring res-
onator with the line-to-ring coupling.

As seen in Figure 7.25a, the coupling structure includes the coupling line,
one side of the square ring resonator and a coupling gap. This coupling struc-
ture can be treated as symmetrical coupled lines [28]. The coupling gap
between the symmetrical coupled lines is modeled as a capacitive L-network
as shown in Figure 7.25b [29]. Cg is the gap capacitance per unit length, and
Cp is the capacitance per unit length between the strip and ground plane.
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These capacitances, Cg and Cp, can be found from the even- and odd-mode
capacitances of symmetrical coupled lines [30]. Figure 7.25c shows the equiv-
alent circuit of the capacitive network, where the input impedance of the ring
resonator Zr can be obtained from [29]. The input impedance Zr1 looks into
the line-to-ring coupling structure toward the ring resonator.The input imped-
ance Zin3 is

(7.14)

where Zr1 = (Zr + Zg) 2 Zp, and w is the angular 

frequency.The parallel ( fp) and series ( fs) resonances of the ring resonator can
be obtained by setting 

(7.15)

The frequency response of the ring circuit can be calculated using the
equivalent circuit in Figure 24b. The ABCD matrix of the ring circuit is

where Yo = 1/Zo. Using Yin3( fp) and Zin3( fs) at resonances, the passband and
stopband of the ring circuit can be obtained by calculating S11 and S21 from the
ABCD matrix in Equation (7.16).

The ring circuit was designed at the center frequency of 2.4GHz and fab-
ricated on a RT/Duroid 6010.5 substrate with a thickness h = 50 mil and a rel-
ative dielectric constant er = 10.5. The dimensions of the filter are ls =
12.07mm, s = 0.2 mm, la = 12.376mm, lb = 6.5mm, wo = 1.158mm, and w1 = 0.3
mm. These parameter values are synthesized from the design equations using
numerical optimization to construct a bandpass filter with attenuation poles
centered at ±330MHz about the parallel resonant frequency.

Figure 7.26a shows the calculated input impedance Zin3 with parallel and
two series resonances of the ring resonator at different lengths of lb. The par-
allel ( fp), lower ( fsL), and higher ( fsH) series resonances corresponding to the
passband and stopband of the ring circuit in Figure 7.24 are denoted by D, �,
and �, respectively. By adjusting the length of lb properly, the parallel reso-
nance can be centered between two series resonances. Also, Figure 7.26b is an
expanded view showing the series resonances. The measured and calculated
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frequency response of the ring circuit is illustrated in Figure 7.27. The filter
has a fractional 3-dB bandwidth of 15.5%. The insertion and return losses are
0.53dB and 25.7dB at 2.3GHz, respectively. Two attenuation poles are at 1.83
and 2.59GHz with attenuation level of 35.2 and 31.3dB, respectively. The
measured unloaded Q of the closed-loop ring resonator is 122.

To improve the passband and rejection, a slow-wave bandpass filter 
using three ring resonators has also been built. As seen in Figure 7.28, the 
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transmission line is loaded periodically by three ring resonators, where Zin4 is
the input impedance looking into le toward the ring.

The filter uses the same dimensions as the filter with a single ring resonator
in Figure 7.24, but with the transmission lengths ld = 15.686mm and le =
5.5mm, which are optimized by the calculation equations to obtain wider stop
bands than the filter in Figure 7.24. The frequency response of the filter can
be obtained from ABCD matrix of the equivalent circuit in Figure 7.28b.
Figure 7.29 illustrates the measured and calculated results. The filter with an
elliptic-function characteristic has a 3-dB fractional bandwidth of 8.5% and a
pass band from 2.16 to 2.34GHz with return loss better than 10dB. The
maximum insertion loss in the pass band is 1.45dB with a ripple of ±0.09dB.
In addition, the two stop bands exhibit a rejection level larger than 50dB
within 1.76–2GHz and 2.52–2.7GHz. Observing the frequency response of the
filters in Figures 27 and 29, the differences between the calculated and meas-
ured results are partly due to the use of a lossless calculation model.

The new slow-wave bandpass filters use higher order modes to build up a
bandpass filter with a wide passband [25] or to provide lowpass or bandstop
features [23, 24]. In comparison with bandpass filters that use parallel- and
cross-coupled resonators with coupling gaps between the resonators, these
new slow-wave bandpass filters show lower insertion loss at similar resonant
frequencies [31–33]. This is an important finding because the new filter struc-
ture uses more conductor than the parallel- and cross-coupled structures. This
implies that the new filter topology significantly reduces the insertion loss
caused in parallel- and cross-coupled bandpass structures by eliminating 
coupling gaps between resonators.
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7.6 RING BANDPASS FILTERS WITH TWO TRANSMISSION ZEROS

To achieve the high selectivity characteristic, Levy introduced filters using
cross-coupled structure [34]. The cross coupling between nonadjacent res-
onators creates transmission zeros that improve the skirt rejection of the
microstrip filters [35–37]. Figure 7.30 shows the configuration of the filter using
two hairpin resonators with asymmetric feed lines tapping the resonators [38].
The input and output feed lines divide the resonators into two sections of l1

and l2. The total length of the resonator is l = l1 + l2 = lg/2, where lg is the
guided-wavelength at fundamental resonance. The coupling between the 
two open ends of the resonators is simply expressed by the gap capacitance
Cs1 [36, 39].

Inspecting Figure 7.30, the whole circuit represents a shunt circuit, which
consists of upper and lower sections. Each section is composed of l1, l2, and Cs1.
The ABCD matrixes for the upper and lower sections of the lossless shunt
circuit are

(7.17a)

(7.17b)

with 

where b is the propagation constant, zc = 1/jwCs1

is the impedance of the gap capacitance Cs1, w is the angular frequency, and Zo
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= 1/Yo is the characteristic impedance of the resonator. The Y parameters of
the upper and lower sections are obtained from (7.17a) and (7.17b) and given
by

(7.18)

where j = upper or lower is for upper or lower sections. In addition, the total
Y parameter of the whole circuit is expressed as

(7.19)

The insertion loss S21 of the circuit can then be calculated from the total Y-
parameters and is expressed as

(7.20)

Comparing Equations (7.17)–(7.20) with (12), (13), and (16) in [38], (12), (13),
and (16) in [38] only present a special case of the two hairpin resonators with
two asymmetric feed lines tapped at the center. Equations (7.17) to (7.20)
given here are more general for the asymmetric feed lines tapped at arbitrary
positions on the resonators. The transmission zeros can be found by letting 
S21 = 0, namely

(7.21)

For a small Cs1, Equation (7.21) can be approximated as

(7.22)

Inspecting Equation (7.22), it shows the relation between the transmission 

zeros and the tapping positions. Substituting into Equation 

(7.22), the transmission zeros corresponding to the tapping positions are
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(7.23)

where f is the frequency, eeff is the effective dielectric constant, n is the mode
number, c is the speed of light in free space, and f1 and f2 are the frequencies
of the two transmission zeros corresponding to the tapping positions of the
lengths of l1 and l2 on the resonators. At the transmission zeros, S21 = 0 and
there is maximum rejection.

Figure 7.31 shows the measured results for different tapping positions on
the hairpin resonators in Figure 7.30. The filter was designed at the funda-
mental frequency of 2GHz and fabricated on a RT/Duroid 6010.2 substrate
with a thickness h = 25mil and a relative dielectric constant er = 10.2. Table 7.3
shows the measured and the calculated results for the transmission zeros 
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FIGURE 7.31 Measured results for different tapping positions with coupling gap s1 =
0.35mm [38]. (Permission from IEEE.)

TABLE 7.3 Measured and calculated results of the hairpin resonators for different
tapping positions [38]. (Permission from IEEE.)

Measurements Calculations

l1 = l2 = l/2 = 14.43 mm No passband at 2 GHz f1 = f2 = 2 GHz

l1 = 12.69 mm, l2 = 16.16 mm f1 = 1.8 GHz, f1 = 1.79 GHz,
f2 = 2.25 GHz f2 = 2.27 GHz

l1 = 11.24 mm, l2 = 17.61 mm f1 = 1.68 GHz, f1 = 1.64 GHz,
f2 = 2.48 GHz f2 = 2.57 GHz



corresponding to the different tapping positions. Inspecting the results, the
measurements agree well with the calculations.

Figure 7.32 shows the filter using two open-loop ring resonators [38]. This
type resonator with two folded arms is more compact than the filter in Figure
7.30. This filter has the same dimensions as the filter in Figure 7.30, except 
for the two additional 45-degree chamfered bends and the coupling gap g =
0.5mm between the two open ends of the ring.

Figure 7.33 shows the measured results for the different tapping positions
on the rings. The measured locations of the transmission zeros are listed in
Table 7.4. Comparing with Table 7.3, the locations of the transmission zeros of
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FIGURE 7.33 Measured results for different tapping positions with coupling gap 
s1 = 0.35mm [38]. (Permission from IEEE.)



the filters using open-loop rings are very close to those of the filters using
hairpin resonators.This implies that the coupling effects between the two rings
and the effects of two additional 45-degree chamfered bends only slightly
affect the locations of the two transmission zeros. Thus, Equation (7.23) can
also be used to predict the locations of the transmission zeros of the filters
using open-loop rings.

Observing the measured results in Figures 7.31 and 7.33, the tapping posi-
tions also affect the couplings between two resonators. The case of l1 = 12.69
mm and l2 = 16.16mm in Figure 7.33 shows an overcoupled condition [6, 9],
which has a hump within the passband. The overcoupled condition is given by

(7.24)

where K is the coupling coefficient, Qo is the unloaded Q of either of the two
resonators, and Qe is the external Q. The coupling condition of the filter can
be found using the measured K, Qo, and Qe.The measured K can be calculated
from Equation (7.3). The measured external Q is given by [40]

(7.25)

where Df±90° is the bandwidth about the resonant frequency, over which the
phase varies from -90° to +90°.

Figure 7.32 shows the tapping positions at a distance d from the center of
the resonators to the input and output ports. When d becomes shorter or the
tapping position moves toward the center, the external Q becomes larger [41].
The larger external Q allows the filter to approach the overcoupled condition
in Equation (7.24), causing a hump within the passband. In addition, observ-
ing Equations (7.23) and (7.24), for a shorter d, the two transmission zeros
appear close to the passband, providing a high selectivity nearby the passband.
But this may easily induce an overcoupled condition. Beyond the coupling
effects caused by the tapping positions, the coupling gap s1 also influences the
couplings between two resonators [31]. Therefore, to avoid overcoupling, the
proper tapping positions and gap size should be carefully chosen.
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TABLE 7.4 Measured Results of the Open-loop Ring
Resonators for Different Tapping Positions [38].
(Permission from IEEE.)

Measurements

l1 = l2 = l/2 = 14.43 mm No passband at 2 GHz
l1 = 12.69 mm, l2 = 16.16 mm f1 = 1.83 GHz, f2 = 2.24 GHz
l1 = 11.24 mm, l2 = 17.61 mm f1 = 1.69 GHz, f2 = 2.5 GHz



Figure 7.34 shows the measured results of the filter for the case of l1 =
11.24mm and l2 = 17.61mm. This filter with K = 0.02 < 1/Qo + 1/Qe = 1/130 +
1/15.4 shows an undercoupled condition [6, 9], which does not have a hump 
in the passband. The filter has an insertion loss of 0.95dB at 2.02GHz, a 
return loss of greater than 20dB from 1.98 to 2.06GHz, and two transmission
zeros at 1.69GHz with -50.7-dB rejection and 2.5GHz with -45.5-dB 
rejection, respectively. The 3-dB fractional bandwidth of the filter is 10.4%.
Comparing with the insertion losses of the cross-coupling filters at similar fun-
damental resonant frequencies (2.2dB in [31] and 2.8dB in [36]), the filter in
Figure 7.34 has a lower insertion loss of 0.95dB.

The filter using cascaded resonators is shown in Figure 7.35. The filter uses
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the same dimensions as the open-loop ring in Figure 7.32 with the tapping
positions of l1 = 11.24mm and l2 = 17.61mm at the first and last resonators.
Also, the offset distance d1 between the rings 2 and 3 is designed for asym-
metric feeding between rings 1, 2 and rings 3, 4 to maintain the sharp cutoff
frequency response. Therefore, the positions of the two transmission zeros of
the filter can be predicted at around 1.69 and 2.5GHz, respectively. The cou-
pling gap size between rings is s2. The coupling gap s2 = 0.5mm and the offset
distance d1 = 2.88 mm are optimized by EM simulation [8] to avoid the over-
coupled condition.

The measured external Q and the mutual coupling K can be calculated from
Equations (7.3), and they are

where is the mutual coupling between ith ring and jth ring,

( fp2)i,j and ( fp1)i,j are the resonant frequencies of ith ring and jth ring, and the
negative sign in coupling matrix is for electrical coupling [32]. Figure 7.36
shows the simulated and measured results. The filter has a fractional 3-dB
bandwidth of 6.25%. The insertion loss is 2.75dB at 2GHz, and the return loss
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FIGURE 7.36 Measured and simulated results of the filter using four cascaded open-
loop ring resonators [38]. (Permission from IEEE.)



is greater than 13.5dB within 1.95–2.05GHz. The out-of-band rejection is
better than 50dB extended to 1 and 3GHz and beyond.

7.7 PIEZOELECTRIC TRANSDUCER–TUNED BANDPASS FILTERS

Electronically tunable filters have many applications in transmitters and
receivers.As shown in Figure 7.37, the tunable filter circuit consists of the filter
using cascaded resonators, a piezoelectric transducer (PET), and an attached
dielectric perturber above the filter [42]. As described in Chapter 4, Section
4.9, the PET moves the perturber and varies the effective dielectric constant
of the filter, allowing the passband of the filter to shift toward the higher or
lower frequencies. Figure 7.38 shows the measured results for the tuning range
of the passband. With the maximum applied voltage of 90V and a perturber
of dielectric constant er = 10.8 and thickness h = 50mil, the tuning range of the
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filter is 6.5%.The small tuning range can be increased by using a higher dielec-
tric constant perturber. The 3-dB bandwidths of the filters with and without
PET tuning are 130MHz and 125MHz, respectively. This shows that the PET
tuning has little effect on bandwidth. The size of the PET is 70mm ¥ 32mm ¥
0.635mm. The overall size of the filter including the perturber and PET is 
90mm ¥ 50mm ¥ 3.85mm.

7.8 NARROW BAND ELLIPTIC-FUNCTION BANDPASS FILTERS

The narrow band elliptic-function bandpass filter is shown in Figure 7.39 [43].
The filter is constructed by two identical open-loop ring resonators, coupled
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lines, and a crossing line at the middle position of the two resonators. The
coupled lines can enhance the coupling strength to reduce the insertion loss
of the filter. Also, the crossing line provides a perturbation at the current
maximum of the resonator to introduce two transmission zeros next to the
passband. The filter was designed at 2GHz and fabricated on a RT/Duriod
6010.5 substrate with a thickness h = 50mil and a relative dielectric constant
er = 10.5. The dimensions of the filter are w = 1.145mm, s1 = 0.15mm, s2 = 3.435
mm, s3 = 4.58mm, l1 = 3.29mm, l2 = 2.9mm, l3 = 3.435mm, and l4 = 27.61mm.

The simulated and measured results of the filter are shown in Figure 7.40.
Two deep transmission zeros located in the stopband can suppress adjacent
channel interferences. The filter has a 3-dB bandwidth of 1.96% at the fre-
quency of 2.039GHz. The size of the filter is 2.5cm ¥ 1.5cm. Although the
insertion loss of 3.7dB is measured, it can be easily reduced to 2.6dB by just
placing two 2-mm ¥ 2-mm dielectric overlays of the same substrate over 
interstage coupling gaps. Figure 7.41 shows the measured results for with and
without dielectric overlays. In Figure 13, the 3-dB bandwidth is increased
slightly from 1.96% to 2.21% by overlays. Also, the insertion loss has been
improved.

7.9 SLOTLINE RING FILTERS

As mentioned earlier, the resonant modes with odd mode numbers cannot
exist in the asymmetrically coupled microstrip ring structure. However, by
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applying a perturbation at 45° or 135°, the dual resonant mode can be 
excited. The same dual-mode characteristic can also be found in the slotline
ring structure with the perturbation of backside microstrip tuning stubs 
[44, 45].

By using microstrip tuning stubs on the backside of the slotline ring at 45°
and 135°, the dual resonant mode can be excited. Figure 7.42 shows the phys-
ical configuration of the slotline ring dual-mode filter. Figure 7.43 shows the
measured frequency responses of insertion loss and return loss for the slotline
ring dual-mode filter with mode number n = 3. The test circuit was built on a
RT/Duroid 6010.5 substrate with the following dimensions: substrate thickness
h = 0.635mm, characteristic impedance of the input/output microstrip feed
lines Zm0 = 50W, input/output microstrip feed lines line width Wm0 = 0.57mm,
characteristic impedance of the slotline ring Zs = 70.7W, slotline ring line width
WS = 0.2mm, and slotline ring mean radius r = 18.21mm. The S-parameters
were measured using standard SMA connectors with an HP-8510 network
analyzer.

The slotline ring dual-mode filter was obtained with a bandwidth of 7.4%,
a stopband attenuation of more than 40dB, a mode purity of 1.86GHz around
the center frequency, 3.657GHz, and a sharp gain slope transition, Compared
with the microstrip ring dual-mode filter, which was published in [11], the slot-
line ring dual-mode filter has better in-band and out-band performance. Also,
the slotline ring dual-mode filter has the advantages of flexible tuning and ease
of adding series and shunt components.
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FIGURE 7.42 Physical configuration of the slotline ring dual-mode bandpass filter.
[45]. (Permission from IEEE.)

FIGURE 7.43 Measured frequency responses of insertion loss and return loss for the
slotline ring dual-mode filter with backside microstrip tuning stubs at 45° and 135° [45].
(Permission from IEEE.)



7.10 MODE SUPPRESSION

The utility of ring resonators as filters or tunable resonators can be limited by
their rejection bandwidth, which is determined by the occurrence of multiple
modes. Suppression of the neighboring modes could improve the rejection
bandwidth [46–48]. One method for mode suppression is the incorporation of
a stepped impedance low-pass filter directly into the ring resonator [46].

Figure 7.44 shows a normal ring resonator and its transmission-line equiv-
alent circuit. Certain frequencies of the traveling waves can be attenuated with
the use of filters placed before or after the ring resonator. However, the filters
can be easily incorporated into the transmission lines of the ring resonator to
attenuate certain frequencies traveling through the ring. The filters must be
carefully placed at an unwanted mode’s maximums so as to affect it. Other
modes are undisturbed if the filters are at their minima points. An example of
incorporating a filter into a ring resonator is shown below. The desirable mode
was the ring resonator’s fundamental, while the second mode was designed to
be suppressed.

A 50-W microstrip ring resonator was designed to have a fundamental 
resonance at 1.25GHz on 0.635-mm Duroid substrate (er = 10.6). Figure 7.45
shows the computer-aided design (CAD) package’s simulation of the lightly
coupled ring using the transmission-line model shown in Figure 7.44. We wish
to suppress, without increasing the circuit size, the undesirable second mode
that appears at about 2.5GHz. For this purpose, a three-pole stepped-
impedance low-pass filter (LPF) with a cutoff frequency of 2GHz was
designed using microstrip transmission lines. The filter cutoff was placed far
enough above the first resonance so as not to affect its traveling waves while
still attenuating the second mode by 7dB. Figure 7.45 shows the three-pole
filter’s theoretical response across the modes of the ring resonator. A three-
pole filter was used because it needed to be compact enough not to disturb
the fundamental mode’s maximums that occur at the ring’s gaps. Stepped
impedance microstrip filters mimic capacitive and inductive filter elements
with wide, low-impedance and thin, high-impedance microstrip lines. The
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FIGURE 7.44 Normal microstrip ring resonator topology: (a) circuit layout, and (b)
transmission-line model [46]. (Permission from Electronics Letters.)



impedances for the microstrip lines were 30 W and 100W for the capacitive and
inductive elements, respectively. Two out of the three filter elements were
selected to be wide, capacitive lines because they have less conductive loss
than thin, inductive microstrip lines.

The LPF filter schematic and microstrip implementations can be seen in
Figure 7.46. The LPF was placed at both maxima indicated in Figure 7.44a to
assure proper suppression of the second mode. Figure 7.47 shows the CAD
simulations and measured results of the ring resonator with the incorporation
of the LPF. It can be seen that the CAD simulations of the topology in Figure
7.46b predict the measured results very well.The second mode was completely
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FIGURE 7.45 Normal ring resonator and stepped-impedance filter responses [46].
(Permission from Electronics Letters.)

FIGURE 7.46 Microstrip mode-suppression ring resonator topology: (a) circuit
layout, and (b) transmission-line model [46]. (Permission from Electronics Letters.)



suppressed by the LPF, with additional losses in the fundamental frequency.
Notice that the second mode was not just attenuated by the LPF but com-
pletely suppressed. This occurred because of the placement of the LPF at the
affected mode’s maxima, which disrupted the resonance. The fundamental
losses are thought to be due to mismatching and conduction losses associated
with the inductive LPF element. The third mode was affected in two ways,
both of which were modeled accurately by the transmission-line model. First,
the third mode was split due to the LPF discontinuities. A similar split was
observed for a notch discontinuity [49]. Secondly, the LPF attenuated the split
third mode by more than 12dB.The third mode was not completely suppressed
because the LPF was not placed at the third mode’s maxima. However, the
third-mode resonance was significantly attenuated by the LPF.
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CHAPTER EIGHT

Ring Couplers

8.1 INTRODUCTION

Hybrid couplers are indispensable components in various microwave inte-
grated circuit (MIC) applications such as balanced mixers, balanced amplifiers,
frequency discriminators, phase shifters, and feeding networks in antenna
arrays. Some of the more commonly used are 180° hybrid-ring and 90° branch-
line couplers. Rat-race hybrid rings [1] and reverse-phase hybrid rings [2–4]
are well-known examples of 180° hybrid-ring couplers. Some other hybrid-ring
couplers with improved bandwidth have also been reported [5, 6]. 90° branch-
line couplers have been analyzed in references [7–12]. A computer-aided
design technique that is suitable for the optimum design of multisection
branch-line couplers was described in [13]. Some other optimized methods
that included compensation for the junction discontinuities were also reported
[14–17]. Another class of MIC 90° branch-line coupler, that is, de Ronde’s
coupler, using a combination of microstrip lines and slotlines was proposed in
reference [18] and optimized in references [19–24]. This chapter presents the
ring circuits for coupler applications [25].

8.2 180° RAT-RACE HYBRID-RING COUPLERS

8.2.1 Microstrip Hybrid-Ring Couplers

The microstrip rat-race hybrid-ring coupler [25] has been widely used in
microwave power dividers and combiners. Figure 8.1 shows the physical con-
figuration of the microstrip rat-race hybrid-ring coupler.To analyze the hybrid-
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ring coupler, an even–odd-mode method is used. When a unit amplitude wave
is incident at port 4 of the hybrid-ring coupler, this wave is divided into two
components at the ring junction. The two component waves arrive in phase 
at ports 2 and 3, and 180° out of phase at port 1. By using the even–odd-mode
analysis technique, this case can be decomposed into a superposition of two
simpler circuits, as shown in Figures 8.2 and 8.3. The amplitudes of the scat-
tered waves from the hybrid-ring are given by [26]

(8.1a)

(8.1b)

(8.1c)

(8.1d)

where Ge,o and Te,o are the even- and odd-mode reflection and transmission
coefficients, and B1, B2, B3, and B4 are the amplitudes of the scattered waves at
ports 1, 2, 3, and 4, respectively. Using the ABCD matrix for the even- and
odd-mode two-port circuits shown in Figures 8.2 and 8.3, the required reflec-
tion and transmission coefficients in Equation (8.1) are [26]
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FIGURE 8.1 Physical layout of the microstrip rat-race hybrid-ring coupler.
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FIGURE 8.2 Even-mode decomposition of the rat-race hybrid-ring coupler when port
4 is excited with a unit amplitude incident wave.
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Using these results in Equation (8.1) gives
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FIGURE 8.3 Odd-mode decomposition of the rat-race hybrid-ring coupler when port
4 is excited with a unit amplitude incident wave.



(8.3b)

(8.3c)

(8.3d)

which shows that the input port (port 4) is matched, port 1 is isolated from
port 4, and the input power is evenly divided in phase between ports 2 and 3.
For impedance matching, the square of the characteristic impedance of the
ring is two times the square of the termination impedance.

Consider a unit amplitude wave incident at port 1 of the hybrid-ring coupler
in Figure 8.1. The wave divides into two components, both of which arrive at
ports 2 and 3 with a net phase difference of 180°. The two component waves
are 180° out of phase at port 4. This case can be decomposed into a superpo-
sition of two simpler circuits and excitations, as shown in Figures 8.4 and 8.5.
The amplitudes of the scattered waves will be [26]

(8.4a)

(8.4b)

(8.4c)

(8.4d)

Using the ABCD matrix for the even- and odd-mode two-port circuits shown
in Figure 8.3, the required reflection and transmission coefficients in Equation
(8.4) are [26]
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Using these results in Equation (8.4) gives
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FIGURE 8.4 Even-mode decomposition of the rat-race hybrid-ring coupler when port
1 is excited with a unit amplitude incident wave.



which shows that the input port (port 1) is matched, port 4 is isolated from
port 1, and the input power is evenly divided between ports 2 and 3 with a
180° phase difference.

8.2.2 Coplanar Waveguide-Slotline Hybrid-Ring Couplers

The uniplanar rat-race hybrid-ring coupler was developed based on the same
operating principle as the microstrip rat-race hybrid-ring coupler. Figure 8.6
shows the circuit diagram of the uniplanar slotline hybrid-ring coupler with
coplanar waveguide (CPW) feeds. The uniplanar slotline ring coupler consists
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FIGURE 8.5 Odd-mode decomposition of the rat-race hybrid-ring coupler when port
1 is excited with a unit amplitude incident wave.



of three quarter-wavelength slotline sections, one phase-delay section, and
four CPW to slotline T-junctions. Figure 8.7 shows the equivalent circuit of the
slotline hybrid-ring coupler. The characteristic impedance of the slotline ring
ZS is determined by

(8.7)

where ZC0 is the characteristic impedance of the CPW feed lines. The mean
radius r of the slotline is also determined by

(8.8)

where lgs is the guide wavelength of the slotline. The measured and calculated
results of the uniplanar slotline rat-race hybrid-ring coupler are shown in
Figures 8.8 and 8.9, respectively. The calculated results were based on the
transmission-line model of Figure 8.7. As shown in Figure 8.8, the uniplanar
slotline hybrid-ring coupler has a bandwidth of 18.6% with a maximum ampli-
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FIGURE 8.6 Circuit layout of the uniplanar rat-race slotline hybrid-ring coupler with
CPW feeds.



tude imbalance of 1dB and an isolation of over 20dB. For an ideal 3-dB
coupler, the insertion loss should be 3dB. The 1.2dB extra loss is mainly due
to the CPW-slotline T-junctions.

Figure 8.10 shows the circuit layout of a double-sided slotline rat-race
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FIGURE 8.7 Equivalent circuit of the uniplanar rat-race slotline hybrid-ring coupler
with CPW feeds.

FIGURE 8.8 Measured results of power dividing and isolation for the uniplanar rat-
race slotline hybrid-ring coupler with CPW feeds.
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FIGURE 8.9 Calculated results of power dividing and isolation for the uniplanar rat-
race slotline hybrid-ring coupler with CPW feeds.

FIGURE 8.10 Physical configuration of the double-sided rat-race slot-line hybrid-ring
coupler with microstrip feeds [27]. (Permission from IEEE.)



hybrid-ring coupler with microstrip feeds [27]. Figure 8.11 shows the equiva-
lent transmission-line model.The impedance of the slotline ring and microstrip
feed lines is obtained from the following equation:

(8.9)

where ZS and Zm0 are the characteristic impedance of the slotline ring and
microstrip feed lines, respectively, and N is the turn ratio of the equivalent
transformer. The turn ratio was reported by [28] to be

(8.10)

where

(8.11)

h is the thickness of the substrate, b/2 is the length of the microstrip feed 
to the slotline, V0 is the voltage across the slot, and Ey(h) is the electric field
of the slotline on the dielectric surface of the opposite side. From Cohn’s
analysis [29],

(8.12)E h
V
b

U
h q

U
hy ( ) = - Ê

Ë
ˆ
¯ - ( ) Ê

Ë
ˆ
¯

È
ÎÍ

˘
˚̇

0

0
0

0

2 2
cos cot sin

p
l

p
l

V h E h dyy
b

b
( ) = - ( )

-Ú 2

2

N
V h
V

=
( )

0

Z
Z

NS

m

2

0
2

22=

180° RAT-RACE HYBRID-RING COUPLERS 207

FIGURE 8.11 Equivalent circuit of the double-sided rat-race slotline hybrid-ring
coupler with microstrip feeds.



where

(8.13)

(8.14)

(8.15)

where lgs is the guide wavelength of the slotline.
The mean radius of the double-sided slotline rat-race hybrid-ring is deter-

mined by Equation (8.8). Figures 8.12 and 8.13 show the measured and 
calculated results of the double-sided slotline rat-race hybrid-ring coupler.
The theoretical results were calculated from the equivalent transmission-line
model of Figure 8.11. The test circuit was built on a RT/Duroid 6010.8 
substrate with the following dimensions: substrate thickness h = 1.27mm,
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FIGURE 8.12 Measured results of power dividing and isolation for the double-sided
rat-race slotline hybrid-ring coupler with microstrip feeds [27]. (Permission from
IEEE.)



microstrip impedance Zm0 = 50W, microstrip line width Wm0 = 1.09mm, slotline
impedance ZS = 70.7W, slotline line width Ws = 0.85mm, and slotline ring mean
radius r = 12.78mm.

As shown in Figure 8.12, a double-sided slotline rat-race hybrid-ring
coupler with a maximum amplitude imbalance of 1dB and isolation of over
20 dB has been achieved with a bandwidth of more than 26%. The insertion
loss at the center frequency of 3GHz is 3.6dB. For an ideal 3-dB coupler,
the insertion loss should be 3dB. The 0.6dB extra loss is partly due to the
microstrip—slotline transitions. Besides the insertion loss, the measured and
calculated results shown in Figures 8.12 and 8.13 agree very well.

Compared with the microstrip rat-race hybrid-ring coupler, which can be
implemented with a typical bandwidth of 20%, the double-sided slotline rat-
race hybrid-ring coupler has a bandwidth of more than 26%.

8.2.3 Asymmetrical Coplanar Strip Hybrid-Ring Couplers

The asymmetrical coplanar strip (ACPS) like CPW has the advantages of
small dispersion, simple realization of short-circuited ends, easy integration
with lumped elements and active devices, and no need for via holes. These
attractive characteristics make ACPS important in MIC and MMIC designs
[30–33]. However, when used in conjunction with hybrid rings, CPW presents
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FIGURE 8.13 Calculated results of power dividing and isolation for the double-sided
rat-race slotline hybrid-ring coupler with microstrip feeds [27]. (Permission from
IEEE.)



a problem of having to plate the inner circular conducting ground plane, as
well as bond to it at T-junction. This incorporates extra time and cost in the
fabrication process.

Figure 8.14 shows the physical configuration and equivalent circuit of the
1.5 lg,ACPS circumference uniplanar hybrid-ring coupler that is realized on one
side of substrate using CPW to ACPS transmission lines [34]. The circuit con-
sists of four CPW to ACSP T-junctions and a circular ACSP ring that is divided
into three lg,ACPS/4 sections and one 3lg,ACPS/4 section. The characteristic imped-
ance of the circular ACPS ring is ZR = Zo, where Zo is the characteristic
impedance of the CPW feed lines. The circuit was designed at a center fre-
quency of 3GHz and fabricated on RT/Duriod 6010 (er = 10.8) substrate with
thickness h = 0.635mm, a characteristic impedance of Zo = Zcpw = 50ohms 

2
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FIGURE 8.14 ACPS 180° hybrid-ring coupler (a) circuit configuration and (b) equiv-
alent circuit [34]. (Permission from IEEE.)



for four CPW feed lines, and ZR = 71ohms for the circular ring. The four 
CPW feed lines have a gap of G = 0.29mm and a center conductor width of
wcpw = 0.6mm. The 71-ohms ACPS consists of the ground plane, a space of 
s = 0.27mm, and a line width of wACPS = 0.4mm. The quarter-wavelength 
sections are 10.73mm.

The simulated and measured results with good agreement are shown in
Figure 8.15. In the measured results, the coupling (|S21| or |S41|) is 3.5 ± 0.4dB
(3dB for ideal coupling, the insertion loss is less than 0.9dB, which includes
two coaxial-to-CPW transitions and 40-mm-long input/output CPW lines),
the input return loss (|S11|) is greater than 23dB, and the isolation (|S31|) 
is greater than 21dB. Compared with the typical microstrip hybrid-ring
coupler with a typical bandwidth of 20%, the ACPS coupler has a bandwidth
of 25%.

8.3 180° REVERSE-PHASE BACK-TO-BACK BALUNS

The 180° reverse-phase back-to-back baluns are the alternatives to microstrip
baluns [25, 35]. Microstrip/parallel-plate-line tapered transition is the well-
known microstrip balun used in many microwave balanced circuits. It is fre-
quently incorporated in microwave mixers to connect the coaxial input ports
to a balanced bridge of mixer diodes. The concept of the microstrip tapered-
balun was first proposed by Duncan and Minerva [36] in 1960. They used the
tapered-baluns to drive wide-band balanced aerials. Figure 8.16a shows the
well-known 180° reverse-phase microstrip back-to-back tapered-balun that is
commonly used in balanced mixers. The circuit consists of two microstrip
tapered-baluns that are connected in twisted form. The ground plane of
tapered-balun 1 is on the bottom side of the substrate; the ground plane 
of tapered-balun 2 is on the top side of the substrate. In the middle of the
circuit, the metal strips on both sides of the substrate have equal widths and
are symmetric. This symmetric transmission line is called a parallel-plate line.
In contrast to the microstrip transmission line, which has a ground plane and
is unsymmetric and unbalanced, the parallel-plate is a balanced line.The mixer
diodes are inserted in the balanced parallel-plate line. The signal excited 
from the microstrip line of tapered-balun 1 and the signal excited from the
microstrip line of tapered-balun 2 have a 180° phase difference in the middle
of the parallel-plate line, because the ground planes of tapered-baluns 1 and
2 are on opposite sides of the substrate. Figure 8.17a shows the equivalent
circuit of the microstrip back-to-back balun. The twisted parallel-plate line
connects two ground planes on the opposite sides of the substrate and results
in the 180° phase reversal. The 180° phase reversal is essential for balanced
mixer circuits.

Although the 180° reverse-phase microstrip back-to-back tapered-balun
has a very wide bandwidth, the use of double-sided ground planes results 
in very complicated fabrication and packaging processes. To overcome this
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problem, a new uniplanar 180° reverse-phase back-to-back balun was devel-
oped using the broad-band CPW-slotline transition [25, 35].

Figure 8.16b shows the circuit configuration of the 180° reverse-phase CPW
back-to-back balun [35, 37]. The two CPW-slotline transitions in Figure 8.16b
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FIGURE 8.15 ACPS 180° hybrid-ring coupler (a) simulation and (b) measurement
[34]. (Permission from IEEE.)



use CPW shorts and slotline radial stubs [37]. The slotline radial stubs are
placed on the opposite sides of the internal slotline. The slotline is a symmet-
ric two-wire transmission line. Each side of the internal slotline in Figure 8.16b
connects the center conductor (or ground plane) of the CPW in balun 1 and
the ground plane (or center conductor) of the CPW in balun 2. Referring to
Figure 8.16b, a 180° phase shift of the E-field is introduced into the output
signal at balun 2 when the input signal is excited from balun 1. The change of
the E-field direction is caused by the inserted slotline section that connects
the opposite sides of the CPW gaps at balun 1 and balun 2. Figure 8.17b shows
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FIGURE 8.16 Circuit layout of (a) the 180° reverse-phase microstrip back-to-back
balun, and (b) the 180° reverse-phase CPW back-to-back balun.



the equivalent circuit of the 180° reverse-phase CPW back-to-back balun.
The twisted transmission line represents the internal slotline that connects the
opposite sides of the CPW gaps at balun 1 and balun 2. The phase change of
the twisted slotline is frequency independent and can thus be applied to wise-
band circuits.

To test the 180° phase reversal of the twisted CPW back-to-back balun, a
180° reverse-phase CPW back-to-back balun and an in-phase CPW back-to-
back balun were built. Figure 8.18a and b show the physical configurations and
schematic diagram of E-field distribution for the in-phase and reverse-phase
CPW back-to-back baluns. As shown in Figure 8.18a, the in-phase CPW back-
to-back balun has two slotline radial stubs that are placed on the same side of
the internal slotline section. The E-field directions of the CPW are in phase at
balun 1 and balun 2.

The test circuits were built on a RT/Duroid 6010.8 (er = 10.8) substrate with
the following dimensions: substrate thickness h = 1.27mm, characteristic
impedance of the CPW Zc = 50W, CPW center conductor width SC = 0.51mm,
CPW gap size GC = 0.25mm, characteristic impedance of the slotline ZS = 54.39,
slotline line width WS = 0.1mm, radius of the slotline radial stub r = 6mm, and
angle of the slotline radial stubs q = 90°. The measurements were made using
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FIGURE 8.17 Equivalent circuit of (a) the 180° reverse-phase microstrip back-to-back
balun, and (b) the 180° reversed-phase CPW back-to-back balun.



standard SMA connectors and an HP-8510 network analyzer. The measured
insertion loss includes two coaxial–CPW transitions and two CPW–slotline
transitions.

Figures 8.19 and 8.20 show the measured frequency responses of insertion
loss and phase angle for the 180° reverse-phase and in-phase CPW back-to-
back baluns. Figure 8.21 shows the amplitude and phase differences between
the in-phase and 180° reverse-phase CPW back-to-back baluns.The amplitude
difference is within 0.3dB from 2GHz to 4GHz. Over the same range,
maximum phase difference is maintained within 5° as shown in Figure 8.21.
The 5° phase error is due to the mechanical tolerances, misalignments,
connectors, and discontinuities.
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FIGURE 8.18 Physical layout and schematic diagram of the E-field distribution for
the (a) in-phase and (b) 180° reverse-phase CPW back-to-back baluns [35]. (Permis-
sion from IEEE.)
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FIGURE 8.19 Measured frequency responses of insertion loss for the in-phase and
180° reverse-phase CPW back-to-back baluns [35]. (Permission from IEEE.)

FIGURE 8.20 Measured frequency responses of phase angles for the in-phase and
180° reverse-phase CPW back-to-back baluns [35]. (Permission from IEEE.)
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8.4 180° REVERSE-PHASE HYBRID-RING COUPLERS

8.4.1 CPW-Slotline 180° Reverse-Phase Hybrid-Ring Couplers

The 20 to 26% bandwidth of the rat-race coupler limits its applications to
narrow-band circuits. Several design techniques have been developed to
extend the bandwidth. One technique proposed by March [3] in 1968 used a
lg/4 coupled-line section to replace the 3lg/4 section of the conventional 3lg/2
microstrip rat-race hybrid-ring coupler. Figures 8.22 and 8.23 show the physi-
cal configuration and equivalent circuit of the microstrip reverse-phase hybrid-
ring coupler with a shorted parallel coupled-line section. The shorted parallel
coupled-line section provides a 180° phase delay, as shown in Figure 8.23. The
even- and odd-mode admittances of the coupled-line section vary more slowly
with frequency than those of the conventional three quarter-wavelength
phase-delay sections [3]. Consequently the coupling and other parameters of
the reverse-phase coupler are less frequency dependent. Although the band-
width of the reverse-phase hybrid-ring coupler has been improved up to more
than one octave, the difficulty of constructing the shorted coupled-line section
limits its use at low frequencies.

As mentioned before, the uniplanar structure does not use the backside 
of the substrate and circumvents the need of via holes for short circuits.

FIGURE 8.21 Amplitude and phase differences between the in-phase and 180°
reverse-phase CPW back-to-back baluns.
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FIGURE 8.22 Circuit layout of the microstrip reverse-phase hybrid-ring coupler.

FIGURE 8.23 Equivalent circuit of the microstrip reverse-phase hybrid-ring coupler.



Figures 8.24 and 8.25 show uniplanar implementations of the reverse-phase
hybrid-ring coupler using slotline and CPW rings, respectively [25, 37]. The
coupled-slotline section in Figure 8.24 and the coupled-CPW section in Figure
8.25 require no via holes for the short terminations. Although the uniplanar
reverse-phase hybrid-ring couplers are easier to fabricate than the microstrip
couplers, they still demand a very small gap within the coupled-slotline or
coupled-CPW section when 3-dB coupling is required.

In 1970 Rehnmark [2] proposed a modified reverse-phase hybrid-ring
coupler using a balanced twin-wire line. The 3lg/4 phase delay section is
replaced by a lg/4 section plus a phase reversal obtained by twisting the pair
of lines. However, this circuit is only possible in a twin-wire configuration that
seriously restricts its applications.

Another modified microstrip reverse-phase hybrid-ring coupler was pro-
posed by Chua [4] in 1971. He substituted a lg/4 slotline for the 3lg/4 phase-
delay section of the conventional microstrip rat-race hybrid-ring coupler.
The microstrip-slotline transition provides a 180° phase delay. Since the phase
change of the microstrip-slotline transition is frequency independent, the
resulting microstrip reverse-phase hybrid-ring coupler has a wider bandwidth
than the conventional rat-race hybrid-ring coupler. Although the modified
version has a symmetric geometry, an excellent coupling bandwidth and fairly
good isolation, the double-sided implementation of a curved 3lg/4 microstrip
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FIGURE 8.24 Circuit layout of the slotline reverse-phase hybrid-ring coupler [37].
(Permission from IEEE.)



line with an inserted lg/4 slotline is very difficult to realize in a photolitho-
graphic process. Also, the unity of the ring structure is destroyed, and the
inserted slotline section may cause some discontinuity problems.

To overcome these problems, this section presents a new uniplanar reverse-
phase CPW hybrid-ring coupler using a 180° reverse-phase CPW back-to-back
balun [25, 35]. As mentioned in Section 8.3, the 180° reverse-phase CPW-slot-
line back-to-back transition produces a phase shift that is 180° longer than that
of the in-phase CPW-slotline back-to-back transition. The 180° phase shift is
frequency independent. Figure 8.26 shows the circuit layout of the uniplanar
reverse-phase CPW hybrid-ring coupler. The circuit consists of four CPW-
slotline T-junctions, three quarter-wavelength CPW sections, and one 180°
reverse-phase CPW back-to-back balun. As shown in Figure 8.26, the new
hybrid-ring coupler substitutes a 180° CPW-slotline phase shifter for the phase
delay section used in the conventional rat-race hybrid-ring coupler. The re-
sulting uniplanar reverse-phase hybrid-ring coupler has a broad bandwidth,
because the phase change of the 180° reverse-phase CPW-slotline back-to-
back balun is frequency independent. Figure 8.27 shows the equivalent trans-
mission-line model. The twisted transmission line represents the 180° phase
reversal of the CPW-slotline back-to-back balun.

To test the circuit, a truly uniplanar reverse-phase hybrid-ring coupler was
built on a RT/Duroid 6010.8 (er = 10.8) substrate with the following dimen-
sions: substrate thickness h = 1.524mm, characteristic impedance of the CPW
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FIGURE 8.25 Circuit layout of the CPW reverse-phase hybrid-ring coupler.
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FIGURE 8.26 Circuit layout of the CPW/slotline reverse-phase hybrid-ring coupler
[35]. (Permission from IEEE.)

FIGURE 8.27 Equivalent circuit of the CPW/slotline reverse-phase hybrid-ring
coupler [35]. (Permission from IEEE.)



feed lines ZC0 = 50W, CPW feed lines center conductor width SC0 = 0.53mm,
CPW feed lines gap size GC0 = 0.34mm, characteristic impedance of the CPW
ring ZC = 70.7W, CPW ring center conductor width SC = 0.205mm, CPW ring
gap size GC = 0.47 mm, characteristic impedance of the reverse-phase slotline
section ZS = 70.7W, slotline line width WS = 0.47mm, radius of the slotline radial
stub r = 5mm, angle of the slotline radial stubs q = 30°, and CPW ring mean
radius r = 6.88mm. The measurements were made using standard SMA con-
nectors and an HP-8510 network analyzer. A computer program based on the
equivalent transmission-line mode of Figure 8.27 was developed and used to
analyze the circuit.

Figures 8.28 and 8.29 show the measured and calculated frequency
responses of power dividing and isolation. The measured results show that a
maximum amplitude imbalance of 2dB has been achieved over a 2–4-GHz
bandwidth. The isolation between ports 1 and 4 is more than 17dB over the
same octave bandwidth. At 3GHz, the coupling of the power from port 1 to
the balanced arms 2 and 3 is 3.4dB and 3.7dB, respectively. The isolation is 
25dB at 3GHz. The calculated results agree very well with the experimental
results. As expected, the power dividing characteristics of the reverse-phase
coupler are less frequency dependent. The insertion loss is mainly from the
CPW-slotline transition.
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FIGURE 8.28 Measured results of power dividing and isolation for the CPW/slotline
reverse-phase hybrid-ring coupler [35]. (Permission from IEEE.)



8.4.2 Reduced-Size Uniplanar 180° Reverse-Phase Hybrid-Ring Couplers

The conventional hybrid-ring couplers constructed with quarter-wavelength
lines occupy large areas in MMICs, and the bandwidths are limited due to 
the electrical line lengths. Although several designs have been developed to
extend the bandwidth [38–40], some disadvantages of using microstrip include
the precision fabrication for constructing the shorted coupled-line section [38,
39] and the difficulty of inserting the ground pins for the microstrip shorts [40].

The 180° reverse-phase CPW-slotline back-to-back balun with the advan-
tage of frequency independence makes the coupler achieve a small size of lg/5
for each section and a wide band operation [41]. Figure 8.30 shows the circuit
layout of the wideband reduced-size uniplanar hybrid-ring coupler.The circuit
consists of four CPW-slotline tee junctions and one 180° reverse-phase CPW-
slotline back-to-back balun that is formed using a pair of CPW-to-slotline tran-
sitions as shown in Figure 8.30a. Figure 8.30b shows the equivalent circuit. The
twisted transmission line presents the 180° reverse-phase CPW-slotline back-
to-back balun.

The hybrid-ring coupler in Figure 8.30 was fabricated on RT/Duroid 6010.5
(er = 10.5) with a thickness of 1.524mm. The dimensions of the circuit are as
follows:

Coupler’s circumference: C = 0.8lg (mean radius R = 4.52mm)
slotline ring: Zs = 66.9ohms (slotlline width ws = 0.31mm)
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FIGURE 8.29 Calculated results of power dividing and isolation for the CPW/slotline
reverse-phase hybrid-ring coupler [35]. (Permission from IEEE.)



CPW section: Zc = 66.9ohms (center strip Sc = 0.2mm and gap size Gc =
0.31mm)

CPW feed lines: Zco = 50ohms (center strip Sco = 0.6mm and gap size Gco =
0.31mm)

Slotline radial stub radius: rs = 5mm
Slotline radial stub angle: js = 45°
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FIGURE 8.30 Reduced-size reverse-phase hybrid-ring coupler (a) layout and (b)
equivalent circuit [41]. (Permission from IEEE.)



To eliminate the coupled slotline mode propagating on the CPW lines, bonding
wires have been used at the coupler’s CPW-slotline discontinuities.

Figure 8.31 shows the hybrid-ring coupler’s measured frequency responses
of coupling, isolation, return loss, amplitude, and phase imbalance, respectively.
The measured results show that the couplings of power from port 1 to ports
2 and 3 are 3.6 and 3.7dB at 4GHz, respectively. The isolation between ports
1 and 4 is greater than 19dB, and return loss is more than 15dB both over 
a frequency range from 2.7 to 6GHz. The amplitude and phase imbalance

180° REVERSE-PHASE HYBRID-RING COUPLERS 225

0

-5

-10

-15

-20

10

-40

-10

-30

-20

0

-50
1 2 3 4 5 6

S31

S21

S41

S11

Frequency (GHz)

R
et

ur
n 

Lo
ss

 a
nd

 Is
ol

at
io

n 
(d

B
)

C
ou

pl
in

g 
(d

B
)

(a) 

5

0

-5

-10

10

0

5

-5
1 2 3 4 5 6

Frequency (GHz)

P
ha

se
 D

iff
er

en
ce

 (
dB

)

A
m

pl
itu

de
 D

iff
er

en
ce

 (
dB

)

21 31S - S

S21 S31

(b) 

FIGURE 8.31 Measured results for (a) coupling, return loss, and isolation and (b)
amplitude imbalance and phase imbalance [41]. (Permission from IEEE.)



between ports 2 and 3 are excellent over a broad bandwidth. The reduction of
the line length to 72° has no deleterious effect on performance of the circuit.
However, the radial stub in the center of the ring can cause a problem for the
smaller circumference.

8.4.3 Asymmetrical Coplanar Strip 180° Reverse-Phase 
Hybrid-Ring Couplers

Figure 8.32a shows the circuit configuration of the new hybrid-ring coupler
consisting of four CPW to ACPS T-junctions and four ACPS arms (one 
of them with a 180° phase reversal) [34]. Figure 8.32b shows the equivalent
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FIGURE 8.32 ACPS 180° reverse-phase hybrid-ring coupler (a) configuration and 
(b) equivalent circuit [34]. (Permission from IEEE.)



transmission-line model of the coupler. The twisted transmission line repre-
sents the phase reversal of the ACPS crossover. When the signal is fed to port
1, it splits into two equal components that arrive at ports 2 and 4 in phase, but
are canceled out at port three.

The 180° reverse-phase hybrid-ring coupler was fabricated on an h = 0.635-
mm-thick RT/Duroid 6010.8 (er = 10.8) substrate. The coupler was designed at
the center frequency of 3GHz. The circuit’s CPW feed lines have a charac-
teristic impedance of Zo = Zcpw = 50ohms (strip width wcpw = 0.6mm, gap size
G = 0.29mm), and the ACPS lines have a characteristic impedance of ZR =
Zo = 71ohms (strip width wACPS = 0.4mm, spacing size s = 0.27mm). The four
ACPS arms each have a length of lg,ACPS/4 = 10.73mm. The slotline radial stub’s
radius is r = 6mm with an angle of 90°. Adding air bridges at the circuit’s dis-
continuities is important to prevent the coupled slotline mode from propa-
gating on the CPW and ACPS lines.

The measured data of the reverse-phase hybrid coupler are shown in Figure
8.33a. Over an octave bandwidth from 2 to 4GHz, Figure 8.33a shows that the
coupling (|S21| or |S41|) is 3.95 ± 0.45dB (3dB for ideal coupling) and the isola-
tion (|S31|) is greater than 23dB. The input return loss (|S11|) is greater than 
15dB from 2.2 to 4GHz, and it is greater than 13.5dB from 2 to 4GHz. Figure
8.33b illustrates an important feature of the coupler. The output amplitude
imbalance (±0.4dB) and phase difference (±4°) are excellent over a bandwidth
from 2 to 4GHz because the ACPS crossover provides an almost perfect 180°
phase shift over the entire frequency range. This is an advantage with respect
to the microstrip implementations of the 180° hybridring coupler, where the
lg/2 delay line gives a 180° phase shift only at the center frequency.

8.5 90° BRANCH-LINE COUPLERS

8.5.1 Microstrip Branch-Line Couplers

The microstrip branch-line coupler [25, 37] is a basic component in applica-
tions such as power dividers, balanced mixers, frequency discriminators, and
phase shifters. Figure 8.34 shows the commonly used microstrip branch-line
coupler.To analyze the branch-line coupler, an even-odd mode method is used.
When a unit amplitude wave is incident at port 1 of the branch-line coupler,
this wave divides into two components at the junction of the coupler. The two
component waves arrive at ports 2 and 3 with a net phase difference of 90°.
The component waves are 180° out of phase at port 4 and cancel each other.
This case can be decomposed into a superposition of two simpler circuits and
excitations, as shown in Figures 8.35 and 8.36. The amplitudes of the scattered
waves are [26]
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FIGURE 8.33 Measured results for ACPS 180° reverse-phase hybrid-ring coupler 
(a) coupling, return loss and isolation and (b) amplitude and phase difference [34].
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FIGURE 8.34 Physical configuration of the microstrip 2-branch coupler.

FIGURE 8.35 Even-mode decomposition of the 2-branch coupler.



(8.16d)

where Ge,o and Te,o are the even- and odd-mode reflection and transmission
coefficients, and B1, B2, B3, and B4 are the amplitudes of the scattered waves at
ports 1, 2, 3, and 4, respectively. Using the ABCD matrix for the even- and
odd-mode two-port circuits shown in Figures 8.35 and 8.36, the required reflec-
tion and transmission coefficients in Equation (8.16) are [26]

(8.17a)

(8.17b)

(8.17c)

(8.17d)

Using these results in Equation (8.16) gives
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FIGURE 8.36 Odd-mode decomposition of the 2-branch coupler.



(8.18a)

(8.18b)

(8.18c)

(8.18d)

which shows that the input port is matched, port 4 is isolated from port 1, and
the input power is evenly divided at ports 2 and 3 with a 90° phase difference.
For impedance matching, the square of the characteristic impedance of the
series arms is half of the square of the termination impedance.

8.5.2 CPW-Slotline Branch-Line Couplers

This section presents two uniplanar branch-line couplers using CPW and 
slotline structures [25, 37]. The design technique for the CPW branch-line 
couplers uses a shunt connection, while the design technique for the slotline
branch-line couplers uses a series connection.

Figure 8.37 shows the physical configuration of the CPW branch-line
coupler. When a signal is applied to port 1, outputs appear at ports 2 and 3

B4 0=

B3
1
2

=
-

B
j

2
2

=
-

B1 0=
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FIGURE 8.37 Physical configuration of the CPW 2-branch coupler.



that are equal in amplitude and differ in phase by 90°. Port 4 represents the
isolation port. Figure 8.38 shows the equivalent circuit of the uniplanar CPW
branch-line coupler. The series arms and branch arms are connected in paral-
lel. The corresponding line characteristic impedances of the CPW series and
branch arms for 3-dB coupling, in terms of the termination impedance Z0, can
be expressed as

(8.19)

(8.20)

where ZC1 is the characteristic impedance of the CPW series arms, and ZC2 is
the characteristic impedance of the CPW branch arms.

The measurements were made using standard SMA connectors and an HP-
8510 network analyzer. A computer program based on the equivalent trans-
mission model of Figure 8.38 was developed and used to analyze the circuit.
Figures 8.39 and 8.40 show the measured and calculated performances of 
the fabricated uniplanar CPW branch-line coupler. Figure 8.39 shows that the
amplitude imbalance of 1dB is within a bandwidth of less than 20% at the
center frequency of 3GHz. The measured isolation between ports 1 and 4 is
greater than 50dB at the 3-GHz center frequency. The calculated results agree
very well with the measured results.

Figure 8.41 shows the physical configuration of the slotline branch-line
coupler. Slotline branch-line couplers are duals of the CPW branch-line cou-
plers.The series arms and branch arms are connected in series. Figure 8.42 shows
the equivalent circuit of the slotline branch-line coupler. The corresponding 
line characteristic impedances of the slotline series and branch arms for 3-dB
coupling, in terms of the termination impedance Z0, can be expressed as 

(8.21)

(8.22)Z ZS 2 0=

Z ZS1 02=

Z ZC 2 0=

Z
Z

C 1
0

2
=
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FIGURE 8.38 Equivalent circuit of the CPW 2-branch coupler.



where ZS1 is the characteristic impedance of the slotline series arms, and ZS2 is
the characteristic impedance of the slotline branch arms.

Figures 8.43 and 8.44 show the measured and calculated performances of
the fabricated uniplanar slotline branch-line coupler. The calculated results
were obtained from the equivalent transmission-line model shown in Figure
8.42. Figure 8.43 shows that the amplitude imbalance of 1dB is within a band-
width of less than 20% at the 3-GHz center frequency. The measured isola-
tion between ports 1 and 4 is greater than 30dB at the center frequency 3GHz.

8.5.3 Asymmetrical Coplanar Strip Branch-Line Couplers

The 90° ACPS branch-line hybrid coupler is shown in Figure 8.45a. In a stan-
dard branch-line coupler [34], if the port characteristic impedance is Zo and
two of the lg/4 branches have a characteristic impedance of Zo/ . If Zo =
50ohms, then the two Zo/ lines would each have a characteristic impedance2

2
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FIGURE 8.39 Measured results of power dividing and isolation for the CPW 2-branch
coupler.
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FIGURE 8.40 Calculated results of power dividing and isolation for the CPW 2-
branch coupler.

FIGURE 8.41 Physical configuration of the slotline 2-branch coupler.
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FIGURE 8.42 Equivalent circuit of the slotline 2-branch coupler.
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FIGURE 8.43 Measured results of power dividing and isolation for the slotline 2-
branch coupler.

of 35.4ohms. This impedance value is difficult to attain using ACPS. To over-
come this problem, the input and output port characteristic impedances were
increased to Z¢o (100ohms). By using a CPW quarter-wavelength transformer,
the coupler port impedances (Z¢cpw = Z¢o = 100ohms) were matched to the CPW
(Zcpw = Zo = 50ohms), which can be connected to the standard 50-ohms test
equipment. Based on the above consideration, two high-impedance branches



(Z100 = Z¢o = 100ohms) and two low-impedance branches (Z71 = Z¢o/ = 71
ohms) were designed. The equivalent circuit for this branch-line coupler is
shown in Figure 8.45b. The 71-ohms ACPS branch line (lg,71/4 = 11.07mm) has
a spacing of s = 0.2mm and a linewidth of wACPS = 0.42mm.The 100-ohms ACPS
branch line (lg,100/4 = 10.96mm) has a spacing of s = 0.4mm and a linewidth 
of wACPS = 0.18mm. For the CPW quarter-wavelength transformer section
(lT,cpw/4 = 10.81mm, ZT,cpw = 71ohms), a gap of G = 0.4mm and a linewidth of
wT,cpw = 0.23mm are used.

Bond wires were attached over the CPW feed lines at the T-junctions to
keep the coupled slotline modes from propagating. The branch-line coupler
was fabricated on an h = 0.635-mm-thick RT/Duroid 6010 (er = 10.8) substrate.
Figure 8.46 shows that the branch-line coupler has attained a 10% bandwidth
centered at 3GHz. The coupling is 3.5dB at 3GHz (3dB for ideal coupling,
the insertion loss includes two CPW quarter-wavelength transformers of
length 21.8mm, two CPW input/output sections of length 10mm, and two
coaxial to CPW connectors that were not calibrated out).The input return loss
is greater than 17.1dB, and the isolation is greater than 15.3dB. The coupler
has a worst-case amplitude imbalance of 0.375dB and a worst-case phase
imbalance of 1.9° over the specified bandwidth.

2
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FIGURE 8.45 ACSP 90° branch-line coupler (a) configuration and (b) equivalent
circuit [34]. (Permission from IEEE.)
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CHAPTER NINE

Ring Magic-T Circuits

9.1 INTRODUCTION

This chapter presents novel ring magic-T circuits in details [1]. Magic-Ts 
are fundamental components for many microwave circuits such as power 
combiners and dividers, balanced mixers, and frequency discriminators. The
matched waveguide double-T is a well-known and commonly used wave-guide
magic-T [2, 3]. Figures 9.1 and 9.2 show the physical configuration and elec-
tric field distribution of the waveguide magic-T, respectively. As shown in
Figure 9.2a, when a TE10 mode is incident at port H, the resulting Ey field lines
have an even symmetry in port E.This means that there is no coupling between
ports H and E. At the T-junction the incident wave will divide into two com-
ponents, both of which arrive in phase at ports 1 and 2. As shown in Figure
9.2b, when a TE10 mode is incident at port E, the resulting Ey field lines have
an odd symmetry in port H. Again ports E and H are decoupled. At the T-
junction the incident wave will divide into two components, both of which
arrive at ports 1 and 2 with a 180° phase difference. In practice, tuning posts
and irises are used for matching the double-T junction. The tuning posts and
irises must be placed symmetrically to maintain proper operation.

In 1964, Kraker [4] first proposed a planar magic-T. The circuit uses 
an asymmetric coupled transmission-line directional coupler and Shiffman’s
phase-shift network. In 1965, DuHamel and Armstrong [5] proposed a
tapered-line magic-T. The circuit is based on a tapered asymmetrical trans-
former consisting of two coupled tapered lines. A complete analysis of the
tapered-line magic-T was discussed in [6]. Laughlin [7] proposed a planar
magic-T using a microstrip balun in 1976. In 1980, Aikawa and Ogawa [8] 
proposed a double-sided magic-T that is constructed with microstrip–slotline
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FIGURE 9.1 Physical configuration of the waveguide magic-T.

FIGURE 9.2 Schematic diagram of the E-field distribution of the (a) H-arm’s excita-
tion and (b) the E-arm’s excitation.



T-junctions and coupled slotlines. The double-sided magic-T uses a double-
sided structure and has a 2–10-GHz bandwidth. The two balanced arms of the
double-sided magic-T are on the same side and they do not need a crossover
connection. In recent years, uniplanar transmission lines have emerged as
alternatives to microstrip in planar microwave integrated circuits. As men-
tioned before, the uniplanar microwave integrated circuits do not use the
backside of the substrate, and allow easy series and shunt connections of
passive and active solid-state devices. The use of uniplanar structures cir-
cumvents the need for via holes and reduces processing complexity. In 1987,
Hirota et al. [9] proposed a uniplanar magic-T that uses three coplanar 
waveguide–slotline (CPW) T-junctions and a slotline T-junction. The in-phase
CPW excitation is via an air bridge and the slotline T-junction is used as a
phase inverter. The uniplanar magic-T has a narrow bandwidth.

This chapter first explains the fundamental characteristics of the 180°
reverse-phase CPW–slotline T-junction. The proposed uniplanar T-junction
uses a 180° reverse-phase CPW–slotline back-to-back transition as output
ports to achieve a 180° phase reversal. The phase shift of the T-junction is fre-
quency independent. The third section presents a new uniplanar CPW magic-
T. The circuit consists of a 180° reverse-phase CPW–slotline T-junction and
three CPW T-junctions.The fourth section of this chapter discusses the double-
sided slotline magic-T. The fifth section discusses the uniplanar slotline magic-
T. The circuits discussed in the fourth and fifth sections are based on the 180°
phase-reversal of the slotline T-junction.

9.2 180° REVERSE-PHASE CPW–SLOTLINE T-JUNCTIONS

Figure 9.3 shows the circuit configuration and schematic diagram of the E-field
distribution for a 180° reverse-phase CPW–slotline T-junction [1, 10]. The
arrows shown in this figure indicate the schematic expression of the electric
field in the CPWs and slotlines. The circuit consists of one CPW–slotline T-
junction and two CPW–slotline transitions. As mentioned in Chapter 8, the
phase change of the 180° reverse-phase CPW–slotline back-to-back transition
is frequency independent and can be applied to wide-band circuits. As shown
in Figure 9.3, the E field in the input CPW (near the CPW–slotline T-junction)
is directed toward the CPW center conductor. This produces two slotline
waves with the E-field in the +y direction. At the transition of port 1, the +y-
directed slotline E-field causes the E-field in the output CPW to be directed
toward the CPW center conductor. However, the E-field of the output CPW
at port 2 is directed toward the CPW ground plane due to the +y-directed slot-
line E-field.

According to the preceding principle, a truly uniplanar 180° reverse-phase
CPW–slotline T-junction was built on a RT/Duroid 6010.8 (er = 10.8) substrate
with the following dimensions: substrate thickness h = 1.27mm, characteristic
impedance of the input/output CPW feed lines ZC0 = 50W, input/output CPW
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feed lines center conductor width SC0 = 0.51mm, input/output CPW feed lines
gap size GC0 = 0.25mm, characteristic impedance of the slotline ZS = 60.6W,
slotline line width WS = 0.2mm, radius of the slotline radial stub r = 6mm,
and angle of the slotline radial stubs q = 90°. The measurements were made
using standard SMA connectors and an HP-8510 network analyzer. The 
insertion loss includes two coaxial–CPW transitions and one CPW–slotline
transition.

Figures 9.4 through 9.6 show the measured performances of the fabricated
uniplanar 180° reverse-phase CPW–slotline T-junction. Figure 9.4 shows the
measured frequency responses of insertion loss for the output power dividing.
Figure 9.5 shows the measured frequency responses of the phase angles at 
the output ports. Figure 9.6 shows the amplitude and phase differences. The
maximum amplitude difference is 0.6dB from 2GHz to 4GHz. Over the same
frequency range, the maximum phase difference is 3.5°.

9.3 CPW MAGIC-Ts

Figure 9.7 shows the circuit configuration of the uniplanar CPW magic-T [1,
10]. The uniplanar magic-T consists of a 180° reverse-phase CPW–slotline T-
junction and three CPW T-junctions. The 180° reverse-phase CPW–slotline T-
junction is used as a phase inverter. In Figure 9.7, ports E and H correspond
to the E- and H-arm of the conventional waveguide magic-T, respectively.
Ports 1 and 2 are the power-dividing balanced arms. Figure 9.8 shows the
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FIGURE 9.3 Physical layout and schematic diagram of the E-field distribution for the
180° reverse-phase CPW–slotline T-junction [10]. (Permission from IEEE.)



equivalent transmission-line model of the uniplanar CPW magic-T. The
twisted transmission line in Figure 9.8 represents the phase reversal of the
CPW–slotline T-junction.

Figures 9.9 and 9.10 show the schematic expressions of the E-field distri-
bution and equivalent circuit for the in-phase and 180° out-of-phase couplings,
respectively. The arrows shown in Figure 9.9 and 9.10 indicate the schematic
expression of the electric field in the CPWs and slotlines. In Figure 9.9, the
signal is fed to port H, and then divides into two components, both of which
arrive in-phase at ports 1 and 2. The two component waves arrive at port E
180° out of phase and cancel each other. In this case, the symmetry plane at
port H corresponds to an open circuit (magnetic wall), while the symmetry
plane at port E corresponds to a short circuit (electric wall). In Figure 9.10,
the signal is fed to port E, and then divides into two components, which arrive
at ports 1 and 2 with a 180° phase difference. The 180° phase difference
between the divided signals at ports 1 and 2 is due to the 180° reverse-phase
CPW–slotline T-junction. The two component waves arrive at port H 180° out
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FIGURE 9.4 Measured frequency responses of power dividing for the uniplanar 180°
reverse-phase CPW–slotline T-junction.



of phase and cancel each other. The symmetry plane at port E corresponds to
an open circuit (magnetic wall); the symmetry plane at port H corresponds to
a short circuit (electric wall). The isolation between ports E and H is perfect
as long as the mode conversion in the reverse-phase CPW–slotline T-junction
is ideal.

The in-phase equivalent circuit in Figure 9.9 is obtained when ports 1 and
2 are excited by two in-phase input signals with the same amplitude. In this
case, the symmetry plane at port H corresponds to a short circuit, and the 
symmetry plane at port H corresponds to an open circuit. The out-of-phase
equivalent circuit in Figure 9.10 is obtained when ports 1 and 2 are excited by
two 180° out-of-phase input signals with the same amplitude. In this case, the
symmetry plane at port B corresponds to an open circuit, and the symmetry
plane at port H corresponds to a short circuit. A two-port circuit calcula-
tion is used to analyze the isolation and impedance matching instead of the
symmetric four-port networks discussed in Chapter 8, because the circuit is
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FIGURE 9.5 Measured frequency responses of phase angles for the uniplanar 180°
phase-reversed CPW–slotline T-junction.
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FIGURE 9.6 Amplitude and phase differences for the uniplanar 180° phase-reversed
CPW–slotline T-junction.

FIGURE 9.7 Physical configuration of the uniplanar CPW magic-T using a 180°
reverse-phase CPW–slotline T-junction [10]. (Permission from IEEE.)



symmetric with respect to ports E and H [8]. The return loss at ports 1 and 2
is given by

(9.1)

where G+ + and G+ - are the voltage reflection coefficients at port 1 for the in-
phase mode coupling and 180° out-of-phase mode coupling, respectively. The
isolation between ports 1 and 2 is given by

(9.2)

To achieve impedance matching at ports 1 and 2, that is, |S11| = |S22| = 0, the
characteristic impedance of the CPW ZC and the slotline ZS in terms of the
input/output CPW characteristic impedance ZC0 is given by

(9.3)

According to Equations (9.1) to (9.3), a truly uniplanar magic-T was built
on a RT/Duroid 6010.8 (er = 10.8) substrate with the following dimensions:
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FIGURE 9.8 Equivalent circuit of the uniplanar CPW magic-T in Figure 9.7 [10].
(Permission from IEEE.)



substrate thickness h = 1.27mm, characteristic impedance of the input/output
CPW feed lines ZC0 = 50W, input/output CPW feed lines center conductor
width S0C = 0.51mm, input/output CPW feed lines gap size GC0 = 0.25mm, char-
acteristic impedance of the CPW in the magic-T ZC = 70.7W, magic-T CPW
center conductor width SC = 0.51mm, magic-T CPW gap size GC = 0.25mm,
characteristic impedance of the slotline in the magic-T ZS = 70.7W, magic-T
slotline line width WS = 0.25mm, slotline radial stub angle q = 30°, and slot-
line radial stub radius r = 5mm. The measurements were made using standard
SMA connectors and an HP-8510 network analyzer. A computer program
based on the equivalent transmission model of Figure 9.8 was developed and
used to analyze the circuit.
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FIGURE 9.9 Schematic expression of the E-field distribution and equivalent 
transmission-line model for the in-phase coupling mode [10]. (Permission from 
IEEE.)



Figure 9.11 shows the measured and calculated frequency responses of
insertion loss for the H-arm’s power dividing, that is, in-phase mode coupling.
The extra insertion loss is less than 0.7dB at the center frequency of 3GHz.
The maximum amplitude imbalance of the H-arm is 0.3dB in the frequency
range of 2–4GHz. Figure 9.12 shows the measured and calculated frequency
responses of insertion loss for the E-arm’s power dividing, that is, 180° out-of-
phase mode coupling. The extra insertion loss is less than 1.1dB at the center
frequency of 3GHz. The maximum amplitude imbalance of the E-arm is 
0.5dB in the frequency range of 2–4GHz. As shown in Figures 9.11 and 9.12,
the calculated results agree in general with the measured results except the
insertion loss. The additional insertion loss of the CPW magic-T in the 
measurement is mainly due to the CPW–slotline transition in the reverse-
phase T-junction.
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FIGURE 9.10 Schematic expression of the E-field distribution and equivalent 
transmission-line model for the 180° out-of-phase coupling mode [10]. (Permission
from IEEE.)
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FIGURE 9.11 Measured and calculated frequency responses of the H-arm’s power
dividing for the uniplanar CPW magic-T [10]. (Permission from IEEE.)

FIGURE 9.12 Measured and calculated frequency responses of the E-arm’s power
dividing for the uniplanar CPW magic-T [10]. (Permission from IEEE.)



Figure 9.13 shows the measured and calculated frequency responses of
mutual isolation between the E- and H-arms and the balanced arms 1 and 2.
The isolation between the E- and H-arms is greater than 30dB from 2GHz to
4GHz. Over the same frequency range, the mutual isolation between the two
balanced arms is greater than 12dB.

Figure 9.14 shows the amplitude balance for the 180° out-of-phase and in-
phase mode coupling. The maximum amplitude imbalance of the E-arm is 
0.5dB from 2–4GHz. The maximum amplitude imbalance of the H-arm is 
0.3dB in the same frequency range. Figure 9.15 shows the phase balance for
the 180° out-of-phase and in-phase mode coupling. The phase error of the E-
arm is 0.8° at the center frequency of 3GHz. The E-arm’s maximum phase
imbalance is 3.5° over the frequency range of 2–4GHz. The phase error of the
H-arm is 0.7° at the center frequency of 3GHz. The H-arm’s maximum phase
imbalance is 2° from 2–4GHz.

The experimental and theoretical results just presented show that the uni-
planar magic-T has fairly good amplitude and phase balances. With the advan-
tages of broad-band operation, simple design procedure, uniplanar structure,
and ease of integrating with solid-state devices, the uniplanar CPW magic-T
should have many applications in microwave and millimeter-wave hybrid and
monolithic integrated circuits.
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FIGURE 9.13 Measured and calculated frequency responses of the mutual isolation
for the uniplanar CPW magic-T [10]. (Permission from IEEE.)
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FIGURE 9.14 H- and E-arms’ amplitude balances for the uniplanar CPW magic-T
[10]. (Permission from IEEE.)

FIGURE 9.15 H- and E-arms’ phase balances for the uniplanar CPW magic-T [10].
(Permission from IEEE.)



9.4 180° DOUBLE-SIDED SLOTLINE RING MAGIC-Ts

Figure 9.16 shows the circuit layout of the double-sided slotline ring magic-T
[1, 11, 12]. The circuit simply consists of a slotline T-junction and a slotline ring
with three microstrip feeds. The slotline T-junction is a well-known 180°
reverse-phase T-junction and is used as a phase inverter in the slotline magic-
T. In Figure 9.16, ports E and H correspond to the E- and H-arms of the 
conventional waveguide magic-T, respectively. Ports 1 and 2 are the power-
dividing balanced arms. Figure 9.17 shows the equivalent transmission-line
model of the double-sided slotline magic-T. The twisted transmission line in
Figure 9.17 represents the phase reversal of the slotline T-junction.

Figures 9.18 and 9.19 show the schematic expressions of the in-phase and
180° out-of-phase couplings, respectively. The arrows shown in Figures 9.18
and 9.19 indicate the schematic expression of the electric field in the slotlines.
In Figure 9.18, the signal is fed to port H and then divides into two compo-
nents, both of which arrive in phase at ports 1 and 2.The two component waves
arrive in-phase at the slotline T-junction and cannot be extracted from port E.
In Figure 9.19 the signal is fed to port E and then divides into two compo-
nents, which arrive at ports 1 and 2 with a 180° phase difference. The 180°
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FIGURE 9.16 Physical layout of the double-sided slotline ring magic-T with
microstrip feeds.
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FIGURE 9.17 Equivalent circuit of the double-sided slotline ring magic-T with
microstrip feeds.

FIGURE 9.18 Schematic expression of the E-field distribution in the double-sided
slotline ring magic-T for the in-phase coupling mode.



phase difference between the divided signals at ports 1 and 2 is due to the slot-
line T-junction. The two component waves arrive at port H 180° out of phase
and cancel each other. The isolation between ports B and H is perfect as long
as the mode conversion in the slotline T-junction is ideal.

The characteristic impedance of the double-sided slotline magic-T was also
designed by Equation (9.3). The radius of the slotline ring is determined by

(9.4)

where lgs is the guide wavelength of the slotline ring.
The measured and calculated results of the double-sided slotline magic-T

are shown in Figures 9.20 and 9.21, respectively. The theoretical results were
calculated from the equivalent transmission-line model in Figure 9.17.The test
circuit was built on a RT/Duroid 6010.8 substrate with the following dimen-
sions: substrate thickness h = 1.27mm, characteristic impedance of the
input/output microstrip feed lines Zm0 = 50W, input/output microstrip feed
lines line width Wm0 = 1.09mm, characteristic impedance of the slotline ring
ZS = 70.7W, slotline ring width WS = 0.85mm, slotline ring mean radius 
r = 8.4193mm, characteristic impedance of the slotline feed ZS0 = 54.39W, and

2p lr gs=
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FIGURE 9.19 Schematic expression of the E-field distribution in the double-sided
slotline ring magic-T for the 180° out-of-phase coupling mode.
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FIGURE 9.20 Measured results of power dividing and isolation for the double-sided
slotline ring magic-T with microstrip feeds [12]. (Permission from IEEE.)

FIGURE 9.21 Calculated results of power dividing and isolation for the double-sided
slotline ring magic-T with microstrip feeds [12]. (Permission from IEEE.)
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FIGURE 9.22 Physical configuration of the uniplanar slotline ring magic-T using a
180° reversed-phase slotline T-junction.

slotline feed line width WS0 = 0.1mm. The measurements were made using
standard SMA connectors and an HP-8510 network analyzer.

As shown in Figure 9.20, a broad-band double-side slotline magic-T with
an excellent isolation of greater than 35dB and a good power-dividing balance
of 0.2dB was achieved over an 80% bandwidth. The 1.3-dB insertion loss at
the center frequency of 3GHz is due to the microstrip–slotline transition and
the slotline T-junction. Except for the extra insertion loss, the measured and
calculated results shown in Figures 9.20 and 9.21 agree very well.

9.5 180° UNIPLANAR SLOTLINE RING MAGIC-Ts

Figure 9.22 shows the physical configuration of the uniplanar slotline ring
magic-T [1, 10, 13, 14]. The E-arm of the uniplanar slotline magic-T is fed
through a CPW connected to a broad-band TYPE-AC CPW–slotline transi-
tion [13]. The slotline T-junction is used as a phase inverter to achieve the 180°
phase reversal.The H-arm and output balanced arms are all fed by CPW lines.
In Figure 9.22, ports E and H correspond to the E- and H-arms of the con-
ventional waveguide magic-T, respectively. Ports 1 and 2 are the power-
dividing balanced arms. Figure 9.23 shows the equivalent transmission-line
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FIGURE 9.23 Equivalent circuit of the uniplanar slotline ring magic-T.

model of the CPW ring magic-T. The twisted transmission line in Figure 9.23
represents the phase reversal of the slotline T-junction.

Figures 9.24 and 9.25 show the schematic expressions of the in-phase and
180° out-of-phase couplings, respectively. The arrows shown in Figures 9.24
and 9.25 indicate the schematic expression of the electric field in the CPWs
and slotlines. In Figure 9.24, the signal is fed to port H and then divides into
two components, both of which arrive in phase at ports 1 and 2. The two com-
ponent waves arrive at the slotline T-junction in phase and cannot be extracted
from port E. In Figure 9.25, the signal is fed to port E and then divides into
two components, which arrive at ports 1 and 2 with a 180° phase difference.
The 180° phase difference between the divided signals at ports 1 and 2 is due
to the slotline T-junction. The two component waves arrive at port H 180° out
of phase and cancel each other.The isolation between ports E and H is perfect
as long as the mode conversion in the slotline T-junction is ideal.

The characteristic impedance of the slotline ring and CPW feed lines is
determined by Equation (9.3). The mean radius of the slotline ring is given by
Equation (9.4). Using Equations (9.3) and (9.4), a truly uniplanar slotline ring
magic-T was built on a RT/Duroid 6010.8 (er = 10.8) substrate with the fol-
lowing dimensions: substrate thickness h = 1.27 mm, characteristic impedance
of the input/output CPW feed lines ZC0 = 50W, input/output CPW feed lines
center conductor width SC0 = 0.51mm, input/output CPW feed lines gap size
GC0 = 0.25mm, characteristic impedance of the slotline feed ZS0 = 54.39W, slot-



line feed line width WS1 = 0.1mm, characteristic impedance of the slotline ring
ZS = 70.7W, slotline ring line width WS2 = 0.43 mm, and slotline ring radius 
r = 7.77mm. The measurements were made using standard SMA connectors
and an HP-8510 network analyzer. A computer program based on the equiv-
alent transmission mode of Figure 9.23 was developed and used to analyzer
the circuit.

Figure 9.26 shows the measured and calculated frequency responses of
insertion loss for the E-arm’s power dividing, that is, 180° out-of-phase mode
coupling. The extra insertion loss is less than 1dB at the center frequency 
of 3GHz. The maximum amplitude imbalance of the E-arm is 0.5dB in the
frequency range of 2–4GHz. Figure 9.27 shows the measured and calculated
frequency responses of insertion loss for the H-arm’s power dividing, that 
is, in-phase mode coupling. The extra insertion loss is less than 0.5dB at the
center frequency of 3GHz. The maximum amplitude imbalance of the H-arm
is 0.4dB in the frequency range of 2–4GHz.As shown in Figures 9.26 and 9.27,
the calculated results are given together with the measured results. The addi-
tional insertion loss of the uniplanar slotline ring magic-T is mainly due to the
CPW-slotline transition and the slotline T-junction.
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FIGURE 9.24 Schematic expression of the E-field distribution in the uniplanar 
slotline ring magic-T for the in-phase coupling mode.
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FIGURE 9.25 Schematic expression of the E-field distribution in the uniplanar slot-
line ring magic-T for the 180° out-of-phase coupling mode.

FIGURE 9.26 Measured and calculated frequency responses of the E-arm’s power
dividing for the uniplanar slotline ring magic-T.
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FIGURE 9.27 Measured and calculated frequency responses of the H-arm’s power
dividing for the uniplanar slotline ring magic-T.

Figure 9.28 shows the measured and calculated frequency responses of
mutual isolation between the E- and H-arms and the balanced arms 1 and 2.
The isolation between the E- and H-arms is greater than 30dB from 2GHz to
4GHz. Over the same frequency range, the mutual isolation between the two
balanced arms is greater than 12dB.

Figure 9.29 shows the amplitude balance for the 180° out-of-phase and in-
phase mode coupling. The maximum amplitude imbalance of the E-arm is 
0.5dB in the frequency range of 2–4GHz. The maximum amplitude imbalance
of the H-arm is 0.4dB over the same frequency range. Figure 9.30 shows the
phase balance for the 180° out-of-phase and in-phase mode coupling. The
phase error of the E-arm is 3° at the center frequency of 3GHz. The E-arm’s
maximum phase imbalance is 5° over the frequency range of 2–4GHz. The
phase error of the H-arm is 3° at the center frequency of 3GHz. The H-arm’s
maximum phase imbalance is 6° from 2 to 4GHz.

9.6 REDUCED-SIZE UNIPLANAR MAGIC-Ts

Figure 9.31a shows the reduced-size magic T that consists of one out-of-phase
and three in-phase CPW-slotline tee junctions [15]. The out-of-phase T-
junction serves as a phase inverter. In Figure 9.31a, ports E and H correspond
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FIGURE 9.28 Measured and calculated frequency responses of the mutual isolation
for the uniplanar slotline ring magic-T.

FIGURE 9.29 H- and E-arms’ amplitude balances for the uniplanar slotline ring
magic-T.



to the E- and H-arm of the conventional waveguide magic-T, respectively.
Ports 1 and 2 are the balanced arms. Figure 9.31b shows the equivalent trans-
mission line model of the magic-T. The twisted transmission line represents
the reversal of the CPW-slotline T-junction.

Figures 9.32 and 9.33 show the schematic diagram of the E-field distribu-
tion and the equivalent circuit for the in-phase and the out-of-phase coupling,
respectively. In Figure 9.32a, the signal is fed to port H, which then divides into
two components, that both arrive in-phase at ports 1 and 2. However, the two
components arrive at port E, out-of-phase and cancel out each other. In this
case, the symmetry plane at port H corresponds to an open circuit (magnetic
wall), whereas the symmetry plane at port E corresponds to a short circuit
(electric wall).

In Figure 9.33a, the signal is fed to port E, and then divides into two com-
ponents, which arrive at ports 1 and 2 with a 180° phase difference. The 180°
phase difference between the divided signals at ports 1 and 2 is due to the out-
of-phase tee junction. The two components waves arrive at port H out-of-
phase and cancel out each other. The symmetry plane at port E corresponds
to an open circuit (magnetic wall), whereas the symmetry plane at port H cor-
responds to a short circuit (electric wall). The isolation between ports E and
H is perfect as long as the phase reversal in the out-of-phase CPW-soltline T-
junction is ideal.
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FIGURE 9.30 H- and E-arms’ phase balances for the uniplanar slotline ring magic-T.



As shown in Figures 9.32b and 9.33b, an equivalent circuit was used to
analyze the impedance matching. The characteristic impedance of slotline Zs

and CPW Zc in terms of CPW feed line impedance Zco (usually 50ohms) and
q (the electric length of a quarter of the slotline ring circumference) are given
by [16]

(9.5)Z Z Zs c co= = -( )2 1 2cot q
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FIGURE 9.31 Reduced-size uniplanar magic-T (a) layout and (b) equivalent circuit
[15].



According to Equation (9.5), the minimum q is obviously equal to 45°. Simu-
lations indicate that wide band operation is obtained for values of q, which are
smaller in the allowed range. In this design, q = 72° (i.e., lg/5) was chosen,
resulting in the characteristic impedance Zs, Zc = 66.9ohms. The magic-T in
Figure 9.33 was designed at the center frequency of 4GHz and fabricated on
a RT/Duroid 6010.5 (er = 10.5) substrate with thickness h = 1.54mm and metal
thickness t = 10mm. The radius of the radial stub at CPW-slotline transition 
is 5mm. The radial stub angle is 45°. It is important to use air bridges at the
magic-T’s discontinuities to prevent the coupled slotline mode from propa-
gating on the CPW lines.
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FIGURE 9.32 Out-of-phase coupling mode of the magic-T (a) E-field distribution and
(b) equivalent circuit [15]. (Permission from IEEE.)



Figure 9.34 shows the magic-T’s measured and calculated transmission,
return loss, and isolation, respectively. For the E-port’s power division (i.e.,
out-of-phase mode coupling) shown in Figure 9.34a, the insertion loss is less
than 0.7dB at 4GHz. The return loss for the E-port is greater than 15dB from
3.1 to 6GHz. Similarly, Figure 9.34b shows the insertion loss of 0.5dB at 4GHz
for the H port’s power division (i.e., in-phase mode coupling). Also, the return
loss of for the H-port is greater than 15dB from 2.7 to 6.2GHz. The measured
and calculated isolations between the E-port and H-port or ports 1 and 2 are
shown in Figure 9.34c. Figure 9.35 shows that the magic-T has a bandwidth 
of 1.6 octave from 2 to 6GHz with maximum power dividing imbalance of 
0.4dB and 2.5° maximum phase imbalance. The measured performances of 
the various parameters are summarized in Table 9.1.
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FIGURE 9.34 Measured and calculated frequency responses of the magic-T (a) out-
of-phase coupling of E-1, E-2, and E-port’s return loss; (b) in-phase coupling of H-1,
H-2, and H-port’s return loss; and (c) isolations of E-H and 1–2 [15]. (Permission from
IEEE.)
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FIGURE 9.35 Measured frequency responses of the magic-T (a) amplitude imbalance
and (b) phase imbalance [15].

TABLE 9.1 Summary of Measured Performances of the Magic-T [15]

Measured Frequency Bandwidth
Parameter Result Range (GHz) (octave)

Coupling Fed to port E (S1E, S2E) 3.9 ± 0.3 dB 2.8–5.9 >1.075
Fed to port H (S1E, S2E) 3.9 ± 0.3 dB 2.15–6.0 >1.48

Return loss (S11, S22, SEE, SHH) >15 dB 3.1–6.0 >0.95

Isolation Port1 and port2 >18 dB 1.0–6.6 >2.5
Port E and H >30 dB 1.0–7.7 >2.5

Imbalance Amplitude E-1/E-2 <0.4 dB 1.8–6.3 >1.8
Amplitude H-1/H-2 <0.4 dB 1.0–5.9 >2.5
Phase E-1/E-2 181° ± 1.5° 2.0–7.15 >1.8
Phase H-1/H-2 <2.5° 1.0–6.4 >2.5

Meeting all the above specifications 3.1–5.9 >0.93
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CHAPTER TEN

Waveguide Ring Resonators
and Filters

10.1 INTRODUCTION

The annular ring structure has been studied thoroughly for the planar trans-
mission structure [1–10]. Many attractive applications for the planar ring 
circuits have been published [11–23]. This chapter presents a new type of rec-
tangular waveguide ring cavity that can be used as a resonator or a building
block for filters or multiplexers [24, 25]. Compared with planar ring circuits,
the waveguide ring cavities have higher Q values and can handle higher power.
This new type of waveguide component has the flexibility of mechanical and
electronic tuning as well as good predictable performance.

The second section of this chapter discusses the single-mode operation of
the waveguide ring cavities. Two fundamental structures for the waveguide
ring cavities, H- and E-plane waveguide ring cavities, are introduced in this
section. Section 10.2 also discusses regular resonant modes, split resonant
modes, and forced resonant modes. Mechanically tuned and electronically
tuned waveguide ring resonators that are based on the tuning from regular
resonant modes to forced resonant modes are also discussed in the second
section. The third section discusses the dual-mode operation of the waveguide
ring cavities, plus two new dual-mode filters that use the dual resonant modes.
A single-cavity dual-mode filter using the H-plane waveguide ring cavity has
been developed with a bandwidth of 0.77%, a stopband attenuation of more
than 40dB, and a sharp gain slope transition. The other two-cavity dual-mode
filter using two E-plane waveguide ring cavities has been fabricated with a
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bandwidth of 1.12%, a stopband attenuation of 70dB, and a sharp gain slope
transition. The dual-mode index related to the generation of transmission
zeros is also discussed in the third section.

10.2 WAVEGUIDE RING RESONATORS

The waveguide ring cavity can be classified as either an H-plane waveguide
ring cavity or an E-plane waveguide ring cavity [24, 25]. Figures 10.1 and 10.2
show the physical configurations of the H-plane and E-plane waveguide ring
cavities, respectively. The H-plane waveguide ring cavity is formed by a circle
of rectangular waveguide that is curved in the plane of the magnetic field. The
E-plane waveguide ring cavity consists of a circle of rectangular waveguide
that is curved in the plane of the electric field. The differing geometric con-
figurations make the H-plane ring cavity more suitable for a pileup design and
make the E-plane ring cavity more suitable for a cascaded design. Because the
electromagnetic field bending in the E- and H-planes are different, these two
structures bear different characteristics and need different excitation methods.
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FIGURE 10.1 Physical configuration of the H-plane waveguide ring structure.



Both waveguide and coaxial couplings are suitable for exciting the waveguide
ring cavities. The external feeds of the waveguide ring cavities use coaxial–
waveguide transitions. The H-plane waveguide ring cavity has coaxial feeds 
on the top side of the cavity, whereas the E-plane waveguide ring cavity has
coaxial feeds on the annular side of the cavity. These coaxial feeds for the 
H-plane and E-plane annular ring waveguide cavities are designed to excite
the dominant TE10n modes, where n is the mode number of the annular ring
resonators.

Figure 10.3 shows the coordinate systems for the H-plane ring cavity of
cross section a ¥ b with its axis bent to a curvature of c = 1/R, where R is the
mean radius of the waveguide ring cavity. Figure 10.4 shows the coordinate
systems for the E-plane ring cavity of cross section b ¥ a with its axis bent to
a curvature of c = 1/R, where R is the mean radius of the waveguide ring cavity.
The second-order correction to the guide wavelength for the dominant mode
in the H- and E-plane ring cavities is given by [26] to be

(10.1a)
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FIGURE 10.2 Physical configuration of the E-plane waveguide ring structure.
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FIGURE 10.3 Coordinate system for the circular H-plane bend.

FIGURE 10.4 Coordinate system for the circular E-plane bend.



(10.1b)

where a is the broad side of the rectangular waveguide, b is the narrow side
of the rectangular waveguide, c is the curvature of the waveguide ring cavity,
l0 is the wavelength in free space, and lg is the guide wavelength in the rec-
tangular waveguide.

The waveguide ring cavity can be treated as a closed rectangular waveguide.
Figure 10.5a–c show the equivalent waveguide circuits for the waveguide ring
cavities. According to the equivalent circuits shown in Figure 10.5, the wave
functions of the dominant mode in the waveguide ring cavity are given by
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FIGURE 10.5 Equivalent waveguide circuits: (a) ring cavity; (b) equivalent H-plane
rectangular waveguide; and (c) equivalent E-plane rectangular waveguide.



(10.2)

(10.3)

where H0 is the amplitude constant, k¢z is defined by

(10.4a)

and

(10.4b)

and

(10.5)

As shown in Equation (10.2), both of the sine (odd) and cosine (even) solu-
tions can satisfy the boundary conditions of the waveguide ring cavities. This
means that by applying appropriate perturbations it is possible to excite dual
resonant modes in a single waveguide ring cavity. This phenomenon is dis-
cussed later in Section 10.3. The resonant conditions for the waveguide ring
cavities are determined by

(10.6a)

and

(10.6b)

where R is the mean radius of the waveguide ring cavity and n is the mode
number.

10.2.1 Regular Resonant Modes

Symmetric external feeds excite the regular resonant modes in waveguide ring
resonators. The regular resonant modes are the dominant TE10n modes, where
n is the mode number of the ring structure. Figure 10.6 shows the mode chart
of the E-field for the regular resonant modes of a symmetrically coupled wave-
guide ring cavity. As shown in Figure 10.6, the symmetric feeds generate 
the single-mode operation of the waveguide ring cavity. Figure 10.7 shows the
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measured frequency responses of insertion loss and return loss for an H-plane
ring cavity, and Figure 10.8 illustrates the measured frequency responses of
insertion loss and return loss for an E-plane ring cavity. The test H-plane ring
cavity was designed to operate in K-band with the following dimensions: mean
radius R = 16.185 mm, broad side of rectangular waveguide a = 10.73mm, and
narrow side of rectangular waveguide b = 4.44mm.The test E-plane ring cavity
was also designed as a K-band cavity with the following dimensions: mean
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FIGURE 10.6 Mode chart of the E-field for the regular resonant modes.



radius R = 10.11mm, broad side of rectangular waveguide a = 10.20mm, and
narrow side of rectangular waveguide b = 3.88mm. The H-plane ring cavity
has coaxial feeds on top of the cavity, whereas the E-plane ring cavity has
coaxial feeds on the annular side of the cavity. The coaxial feeds for the H-
and E-plane ring cavities are both designed to excite the dominant TE10n

modes.
Figures 10.9 and 10.10 show the theoretical and experimental results for 

the regular resonant frequencies of the H-plane and E-plane ring cavities,
respectively. The theoretical results shown in Figures 10.9 and 10.10 are 
calculated from Equations (10.1) and (10.6). As shown in Figure 10.9, the
regular resonant frequencies of the H-plane ring cavity can be predicted 
correctly within an error or less than 0.32%. The regular resonant frequencies
of the E-plane ring cavity can be predicted within an error of less than 0.23%.
Easy and correct prediction of resonant frequencies and a simple design pro-
cedure make the waveguide ring cavity a good candidate for many waveguide
circuits.
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FIGURE 10.7 Measured frequency response for the regular resonant modes of the K-
band H-plane ring cavity.



Tables 10.1 and 10.2 list the loaded and unloaded Q’s for each type of wave-
guide ring cavity at various resonant frequencies. The loaded Q, QL, shown in
Tables 10.1 and 10.2 is measured using the following equation [27]

(10.7)

where R0 is the resistance at the resonant frequency f0, and dX is the actual
change in reactance between the f0 and f0 + df points. Both the R0 and dX values
were read from the Smith chart using an HP-8510 network analyzer. The rela-
tionship between loaded Q and unloaded Q for the waveguide ring cavities,
which are transmission forms of resonators, is given by [27]
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FIGURE 10.8 Measured frequency response for the regular resonant modes of the K-
band E-plane ring cavity.
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FIGURE 10.9 Measured and calculated results for the regular resonant frequencies
of the H-plane ring cavity.

FIGURE 10.10 Measured and calculated results for the regular resonant frequencies
of the E-plane ring cavity.



where g1 is the voltage standing-wave ratio (VSWR) of the input coupling
circuit with a matched output load and g2 is the VSWR of the output coupling
circuit with a matched input load. Table 10.1 shows that H-plane ring cavity
has an average unloaded Q of 3342.06, whereas Table 10.2 shows that the E-
plane ring cavity has an average unloaded Q of 1933.87.

The cutoff frequency of the waveguide ring cavity is determined by

(10.9)

where a is the broad side of the rectangular waveguide and c is the speed 
of light in free space. The designed cutoff frequency of the H-plane ring cavity
is 14.02GHz; the measured cutoff frequency of the H-plane ring cavity is 
13.91GHz.The designed and measured cutoff frequencies for the E-plane ring
cavity are 14.93GHz and 14.72GHz, respectively.

10.2.2 Split Resonant Modes

The split resonant modes of waveguide ring cavities are generated by using a
tuning post at a specific angle of the circle. Figure 10.11 shows the mode chart
of E-field for the symmetrically coupled waveguide ring cavity with a tuning
post at 45°. According to the mode chart shown in the figure, the resonant
modes with mode numbers

f
c
ac =

2
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TABLE 10.2 Measured QL and Qu for the E-plane Ring Cavity

Calculated f0 Measured f0 Error Measured Measured
(GHz) (GHz) (%) QL Qu

n = 1 15.454 15.443 0.070 714.900 1,483.13
n = 2 17.502 17.482 0.110 684.900 1,559.69
n = 3 20.449 20.412 0.180 775.900 2,505.17
n = 4 23.945 23.889 0.230 604.100 2,187.48

TABLE 10.1 Measured QL and Qu for the H-plane Ring Cavity

Calculated f0 Measured f0 Error Measured Measured
(GHz) (GHz) (%) QL Qu

n = 2 15.146 15.098 0.320 198.200 1,190.9
n = 3 16.564 16.530 0.210 222.100 2,038
n = 4 18.348 18.333 0.080 194.600 3,570.6
n = 5 20.386 20.395 0.040 183.300 3,823.4
n = 6 22.593 22.615 0.090 163.600 3,157.2
n = 7 24.907 24.928 0.080 151.700 6,272.4



(10.10)

where q = 45° and m = 1, 2, 3, . . . , have a maximum or minimum E-field point
that corresponds to a magnetic or electric wall at the position of the tuning
post and will not be split. Figure 10.12 shows the measured frequency response

n m=
∞90

q
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FIGURE 10.11 Mode chart of the E-field for the split resonant modes.



of insertion loss for an H-plane ring cavity that has a tuning post at 45°. As
expected, the fourth resonant mode is not split.

10.2.3 Forced Resonant Modes

A tunable–switchable resonator has been introduced by Martin et al. [17] on
microstrip ring circuits. However, the tunable and switchable conditions have
not been studied thoroughly. This section discusses the forced resonant modes
of the ring cavities, which are caused by the short or open boundary condi-
tions on the ring structure. The tunable and switchable conditions can be
derived using the concept of forced resonant modes.
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FIGURE 10.12 Measured frequency response for the split resonant modes of the H-
plane ring cavity with a tuning post at 45°.



Forced resonant modes are excited by forced boundary conditions, that is,
open or short circuits, on waveguide ring cavities. The short boundary can be
obtained by inserting a tuning post across the waveguide inside the ring cav-
ities. Figure 10.13 shows the mode chart of the E-field for a symmetrically
coupled waveguide ring cavity with a fully inserted tuning post at 90°. As
shown in Figure 10.13, the tuning post forces minima of the E-field to occur
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FIGURE 10.13 Mode chart of the E-field for the forced resonant modes.



on both sides of the short plane. Therefore, the resonant modes with even
mode numbers cannot exist. On the other hand, the half-wavelength resonant
modes with mode numbers n = m/2, where m = 1, 3, 5, . . . , will be excited due
to the short boundary condition.

By inserting the post from zero-depth to full-depth across the waveguide
inside the ring cavities, the resonant modes will change from regular resonant
modes to forced resonant modes. When the post is fully inserted across the
waveguide, the even resonant modes will disappear and the half-wavelength
resonant modes will be excited. The maximum tuning range of the forced 
resonant modes is determined by

(10.11)

where fn is the resonant frequency of the full-wavelength resonant mode with
even mode number n, and fn is the resonant frequency of the excited half-
wavelength resonant mode with mode number n = n ± 1/2. The general design
rule of Equation (10.11) is applied in the following discussion of the mechan-
ically tuned and varactor-tuned waveguide ring cavities.

The mechanically tuned ring cavity was designed as a waveguide ring cavity
with symmetrical feed lines and a tuning post at 90°. According to the mean
radius of the mechanically tuned ring cavity, a maximum tuning range of 
993MHz for the fourth resonant mode is obtained from Equations (10.1),
(10.6), and (10.11). Figure 10.14 shows the measured frequency response of
insertion loss for the mechanically tuned ring cavity. As shown in the figure,
the capacitance of the tuning post increases with the insertion depth. The vari-
ance of the capacitance changes the resonant modes from n to n - 1/2. For the
fourth resonant mode, the tuning range from n = 4 to n = 3.5 is 677MHz, which
is within the maximum tuning range predicted by Equation (10.11).

The varactor-tuned ring cavity has a tuning post mounted with a varactor.
By applying different bias voltages, the capacitance of the mounted varactor
will change. The capacitance of the varactor decreases with increasing bias
voltage. The variance of the capacitance changes the resonant modes from 
n - 1/2 to n. The measured frequency response of insertion loss for the vactor-
tuned ring cavity is shown in Figure 10.15.The tuning range shown in the figure
is 190MHz, which is limited by the tunable capacitance of the varactor. The
tunable capacitance of the varactor is varied from 2.64 to 0.75pF, which is con-
trolled by varying the bias voltage from 0 to 25V. A varactor with a larger
tunable capacitance can be used to achieve better tuning range.

10.3 WAVEGUIDE RING FILTERS

Dual-mode filters have been reported which use circular and rectangular
waveguide linear cavities [28–30]. The excitation of dual resonant modes in
linear waveguide cavities uses a tuning post inserted at the corner of a square

df f fn n v= -
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FIGURE 10.14 Measured frequency response for the mechanically tuned H-plane
ring cavity.

FIGURE 10.15 Measured frequency response for the electronically tuned H-plane
ring cavity.



waveguide [30]. The sign of the mutual coupling coefficient between the dual
resonant modes depends on the position of the inserted post. As shown in
Equations (10.2) and (10.3), both sine (odd) and cosine (even) wave functions
can exist in waveguide ring cavities. The sine and cosine wave functions have
90° phase differences and are orthogonal to each other. This section discusses
the excitation of dual resonant modes, that is, sine (odd) and cosine (even) res-
onant modes, in waveguide ring cavities and the applications of dual resonant
modes in filter design [24, 25].

10.3.1 Decoupled Resonant Modes

Figure 10.16 shows the mode chart of the E-field for an asymmetrically
coupled waveguide ring cavity whose external feeds are 90° apart. According
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FIGURE 10.16 Mode chart of the E-field for the asymmetrically coupled resonant
modes.



to the mode chart of the E-field in the figure, the resonant modes with odd
mode numbers have minimum E-field at the output coupling point. Thus the
electromagnetic energy cannot be coupled through the output port. These 
resonant modes are called decoupled resonant modes. Figure 10.17 shows the
measured frequency response of insertion loss for an asymmetrically coupled
H-plane ring cavity.As shown in Figure 10.17, the resonant modes of the single
H-plane ring cavity, which has a 90° split of the external feed lines without any
tuning post, display maximum insertion loss for those decoupled odd modes.
The measured results shown in the figure agree with the prediction of the
mode-chart analysis.
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FIGURE 10.17 Measured frequency response for the asymmetrically coupled H-plane
ring cavity.



10.3.2 Single-Cavity Dual-Mode Filters

By inserting a tuning post at 45° or 135°, the dual resonant modes can be
excited from the decoupled resonant modes. Figures 10.18 and 10.19 show 
the mode chart of E-field and the phase relationship between the input-
coupled cosine (even) and post-excited sine (odd) resonance for dual 
resonant modes with mode number n = 1, respectively. Figures 10.20 and 
10.21 show the mode chart of E-field and the phase relationship between the
input-coupled cosine (even) and post-excited sine (odd) resonance for dual
resonant modes with mode number n = 3, respectively. As shown in Figures
10.19 and 10.21, the inserted post forces zero E-field on its metal surface.
According to this inserted boundary condition, for the dual resonant mode 
n = 1 shown in Figure 10.19, an inverted-sine (odd) resonance is excited to
cancel out the E-field of the input-coupled cosine (even) resonance on the 
post metal surface. For the dual resonant mode n = 3 shown in Figure 10.21,
however, a sine (odd) resonance is generated to meet the inserted boundary
condition.

Figure 10.22a and b show the equivalent circuits for the dual resonant
modes n = 1 and n = 3. As shown in Figure 10.22a, the polarizations of even
and odd resonances for the dual resonant mode n = 1 are opposite. This means
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FIGURE 10.18 Mode chart of the E-field for the dual resonant mode n = 1. Key:
� = maximum Ey point for cosine wave; � = maximum -Ey point for cosine wave;
� = maximum Ey point for sine wave; = maximum -Ey point for sine wave.



that the sign of the mutual coupling coefficient between the dual resonant
mode n = 1 is negative. For the implementation of a two-pole canonical dual-
mode filter, the transfer function has two transmission zeros when the mutual
coupling coefficient of the dual resonant modes is negative [31]. The polar-
izations of the even and odd resonances for the dual resonant mode n = 3, as
shown in Figure 10.22b, are in the same direction. This means that the sign of
the mutual coupling coefficient between the dual resonant mode n = 3 is pos-
itive. It is not possible to generate transmission zeros using the dual resonant
mode n = 3.

A dual-mode index is used for the prediction of the polarization of the even
and odd resonance and defined by

(10.12)

where n is the resonant mode number and q is the location of the tuning post
that can be 45°, 135°, 225°, or 315°. For the dual resonant mode n = 1 with a

m
n

= + ∞2 90
q
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FIGURE 10.19 Phase relationship between the input-coupled cosine resonance and
post-excited inverted-sine resonance for the dual resonant mode n = 1.



45° perturbation, the dual-mode index of m = 1 implies that the perturbation
post is within the first phase domain of a full guide wavelength, as shown in
Figure 10.19, and the polarizations of even and odd resonances are opposite,
as shown in Figure 10.22a. Similarly, for the dual resonant mode n = 3 with a
45° perturbation, the dual-mode index of m = 2 predicts the second phase
domain perturbation of a full guide wavelength, as shown in Figure 10.21, and
the same polarizations for the even and odd resonances, as shown in Figure
10.22b.

Figures 10.23 and 10.24 show the measured frequency responses of inser-
tion loss for a 90° asymmetrically coupled H-plane ring cavity with tuning
posts at 45° and 135°, respectively.As shown in the figures, the dual-mode filter
with an odd dual-mode index has two transmission zeros and bears a sharp
gain slope transition. However, the dual-mode filter with an even dual-mode
index does not have any transmission zero. The measured results agree with
the prediction of Equation (10.12). The single-cavity dual-mode filter shown
in Figure 10.23, using a single H-plane ring cavity with a tuning post at 45°,
has been achieved for the n = 5 mode with the following results: (1) center fre-
quency f0 = 20.28 GHz; (2) bandwidth BW = 250MHz; (3) midband insertion
loss IL = 2.69dB; and (4) stopband attenuation A = 40dB. The other dual-
mode filter caused by a tuning post at 135°, as shown in Figure 10.24, was
obtained for the n = 7 mode with the following results: (1) center frequency 
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FIGURE 10.20 Mode chart of the E-field for the dual resonant mode n = 3. Key: � =
maximum Ey point for cosine wave; � = maximum -Ey point for cosine wave; � =
maximum Ey point for sine wave; = maximum -Ey point for sine wave.



f0 = 24.62GHz; (2) bandwidth BW = 190MHz; (3) midband insertion loss 
IL = 1.5dB; and (4) stopband attenuation A = 48dB.

Though an excellent in-band performance has been achieved with a single
waveguide ring cavity, the out-band behavior cannot meet the requirements
in some system applications. The following illustrates a new type of two-cavity
dual-mode filter that uses two E-plane ring cavities to achieve better in-band
and out-band performance.

10.3.3 Two-Cavity Dual-Mode Filters

A two-cavity dual-mode filter using two E-plane ring cavities with 90° splits
of the external feed lines was designed to improve the stopband attenuation.
The two-cavity dual-mode filter was built by cascading two identical E-plane
ring cavities. Two tuning posts located at 45° and 135° were used in each 
E-plane ring cavity. The measured frequency response of insertion loss for 
the two-cavity dual-mode filter is shown in Figure 10.25. As shown in the
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FIGURE 10.21 Phase relationship between the input-coupled cosine resonance and
post-excited sine resonance for the dual resonant mode n = 3.



WAVEGUIDE RING FILTERS 293

FIGURE 10.22 Equivalent circuits for the dual-mode filters with mode number (a) 
n = 1 and (b) n = 3.

FIGURE 10.23 Measured frequency response for the single-cavity dual-mode filter
with a tuning post at 45°.
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FIGURE 10.24 Measured frequency response for the single-cavity dual-mode filter
with a tuning post at 135°.

FIGURE 10.25 Measured frequency response for a two-cavity dual-mode filter.



figure, a two-cavity dual-mode filter was achieved for the n = 5 mode with 
the following results: (1) center frequency f0 = 26.82GHz; (2) bandwidth 
BW = 300MHz; (3) insertion loss IL = 2.09dB; and (4) stopband attenuation
A = 70dB.
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11.1 INTRODUCTION

The ring antenna has been used in many wireless systems. The ring resonator
is constructed as a resonant antenna by increasing the width of the microstrip
[1–4]. As shown in Figure 11.1, a coaxial feed with the center conductor
extended to the ring can be used to feed the antenna. The ring antenna has
been rigorously analyzed using Galerkin’s method [5, 6]. It was concluded that
the TM12 mode is the best mode for antenna applications, whereas TM11 mode
is best for resonator applications.Another rigorous analysis of probe-feed ring
antenna was introduced in [7]. In [7], a numerical model based on a full-wave
spectral-domain method of moment is used to model the connection between
the probe feed and ring antenna.

The slot ring antenna is a dual microstrip ring antenna. It has a wider imped-
ance bandwidth than the microstrip antenna. Therefore, the bandwidth of the
slot antenna is greater than that of the microstrip antenna [8–10]. By intro-
ducing some asymmetry to the slot antenna, a circular polarization (CP) radi-
ation can be obtained.The slot ring antenna in the ground plane of a microstrip
transmission line can be readily made into a corporate-fed array by imple-
menting microstrip dividers.

Active antennas have received great attention because they offer savings
in size, weight, and cost over conventional designs. These advantages make
them desirable for possible application in microwave systems such as wireless
communications, collision warning radars, vehicle identification transceiver,
self-mixing Doppler radar for speed measurement, and microwave identifica-
tion systems [11, 12].



Frequency-selective surfaces (FSSs) using circular or rectangular rings have
been used as the spatial bandpass or bandstop filters. This chapter will briefly
discuss these applications. Also, a reflectarray using ring resonators will be
described in this chapter.

11.2 RING ANTENNA CIRCUIT MODEL

The annular ring antenna shown in Figure 11.1 can be modeled by radial trans-
mission lines terminated by radiating apertures [13, 14]. The antenna is con-
structed on a substrate of thickness h and relative dielectric constant er. The
inside radius is a, the outside radius is b, and the feed point radius is c. This
model will allow the calculation of the impedance seen from an input at point
c. The first step in obtaining the model is to find the E and H fields supported
by the annular ring.

11.2.1 Approximations and Fields

The antenna is constructed on a substrate of thickness h, which is very small
compared to the wavelength (l). The feed is assumed to support only a z-
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FIGURE 11.1 The annular ring antenna configuration.



directed current with no variation in the z direction (d/dz = 0). This current
excitation will produce transverse magnetic (TM) to z-fields that satisfy the
following equations in the (r, f, z) coordinate system [15]:

(11.1)

(11.2)

(11.3)

where

(11.4)(11.4)

fn(f) is a linear combination of cos(nf) and sin(nf), An and Bn are arbitrary
constants, Jn is the nth-order Bessel function, and Yn is the nth-order Neumann
function.

The equations for Ez(r) and Hf(r), without the f dependence, are

(11.5)

(11.6)

where Jn¢ (kr) is the derivative of the nth-order Bessel function and Yn¢ (kr) is
the derivative of the nth-order Neumann function with respect to the entire
argument kr.

These fields are used to define modal voltages and currents. The modal
voltage is simply defined as Ez(r). The modal current is -rHf(r) or rHf(r) for
power propagating in the r or -r direction, respectively. This results in the fol-
lowing expressions for the admittance at any point r:
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11.2.2 Wall Admittance Calculation

As shown in Figure 11.2 the annular ring antenna is modeled by radial trans-
mission lines loaded with admittances at the edges. The s subscript is used to
denote self-admittance while the m subscript is used to denote mutual admit-
tance. The admittances at the walls (Ym(a, b), Ys(a), Ys(b)) are found using two
approaches. The reactive part of the self-admittances (Ys(a), Ys(b)) is the wall
susceptance.The wall susceptances bs(a) and bs(b) come from Equations (11.7)
and (11.8), respectively. The magnetic-wall assumption is used to find the con-
stants An and Bn in Equation (11.6). The Hf(r) field is assumed to go to zero
at the effective radius be and ae. The effective radius is used to account for the
fringing of the fields.
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FIGURE 11.2 The annular ring antenna modeled as radial transmission lines and load
admittances [13]. (Permission from IEEE.)



It is easily seen that Equations (11.7) and (11.8) will be purely reactive when
the magnetic-wall assumption is used to calculate An and Bn. This results in
the expressions

(11.9)

(11.10)

The mutual admittance Ym(a, b) and wall conductances gs(a) and gs(b) are
found by reducing the annular ring structure to two concentric, circular, copla-
nar magnetic line sources. The variational technique is then used to determine
the equations [15].

The magnetic line current at r = a was divided into differential segments
and then used to generate the differential electric vector potential dF. The
electric field at an observation point is found from

(11.11)

Then the magnetic field at r = b and z = 0 can be found from Maxwell’s 
equation:

(11.12)

The total Hf component of the magnetic field at r = b and z = 0 due to the
current at r = a is

(11.13)

where a is the angle representation for the differential segments.
The mutual admittance will obey the reciprocity theorem, that is, the effect

of a current at a on b will be the same as a current at b on a. The reaction
concept is used to obtain

where

Ea = the radial electric fringing aperture field at a

Eb = the radial electric fringing aperture field at b
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where

This equation can be reduced to a single integral equation by replacing the
coefficient of the cos f term in the Fourier expansion of Hf with the sum of
all the coefficients and evaluating at f = 0:

(11.15)

and

The self-conductance at a or b can be found by substituting a = b in Equa-
tion (11.15) and extracting only the real part:
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This completes the solutions for the admittances at the edges of the ring:

11.2.3 Input Impedance Formulation for the Dominant Mode

The next step is to transform the transmission lines to the equivalent p-
network. This is accomplished by finding the admittance matrix of the two-
port transmission line. The g-parameters of a p-network can then easily be
found:

where

For r = a, r1 is replaced by c and r2 is replaced with a.When r = b, r1 is replaced
with b and r2 by c. Figure 11.3 shows the equivalent circuit and the simplified
circuit.

From simple circuit theory, the input impedance is seen to be:

(11.18)

where
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FIGURE 11.3 The complete circuit model of the annular ring antenna: (a) circuit
model with g-parameters; (b) simplified circuit model [13]. (Permission from IEEE.)
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The h/(psn) term arises from the discontinuity of the Hf field at c.

11.2.4 Other Reactive Terms

The equation for Zin, Equation (11.18), given earlier assumes that the domi-
nant mode is the only source of input impedance. The width of the feed probe
and nonresonant modes contribute primarily to a reactive term. The wave
equation is solved using the magnetic walls, as stated earlier, to find the non-
resonant mode reactance:

(11.19)
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sm = 2 for m = 0; 1 for m > 0

d = the feed width

n = the resonant mode number

The reactance due to the probe is approximated from the dominate term of
the reactance of a probe in a homogeneous parallel-plate waveguide [16]:

(11.20)

where uc is the speed of light.

11.2.5 Overall Input Impedance

The complete input impedance is found by summing the reactive elements
given earlier. The final form of Zinput is

(11.21)

where Re and Im represent the real and imaginary parts of Zin, respectively.
The reactive terms are summed because XM and Xp contribute very little to
the radiated fields.

11.2.6 Computer Simulation

A computer program was written in Fortran to find the input impedance.
The program followed the steps shown in Figure 11.4. The results shown in
Figure 11.5 were checked well with the published results of Bhattacharyya and
Garg [13].
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FIGURE 11.4 Flow chart of the input impedance calculation.



11.3 CIRCULAR POLARIZATION AND DUAL-FREQUENCY 
RING ANTENNAS

A method for circular polarized ring antennas has been proposed in which an
ear is used at the outer periphery [17]. The ear is used as a perturbation to
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FIGURE 11.5 Input impedance of the TM12 mode. a = 3.0 cm; b = 6.0 cm; Œr = 2.2.
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separate two orthogonal degenerate modes. Figure 11.6 shows the circuit
arrangement.

Dual-frequency operation can be achieved using stacked structures [18].
As shown in Figure 11.7, the inner conductor of the coaxial probe passes
through a clearance hole in the lower ring and is electrically connected to the
upper ring. The lower ring is only coupled by the fringing field and 
the overall structure can be viewed as two coupled ring cavities. Since 
the fringing fields are different for the two cavities, their effective inner 
and outer radii are different even though their physical dimensions are the
same. Two resonant frequencies are thus obtained. The separations of the 
two resonant frequencies ranging from 6.30 to 9.36 percent for the first 
three modes have been achieved. The frequency separation can be altered 
by means of an adjustable air gap between the lower ring and the upper 
substrate.

A shorted annular ring antenna that was made by shorting the inner edge
of the ring with a cylindrical conducting wall [19] was recently reported. This
antenna therefore radiates as a circular patch, but has a smaller stored energy
that allows for a larger bandwidth. Figure 11.8 shows the geometry of the
arrangement.

11.4 SLOTLINE RING ANTENNAS

The slotline ring antenna is the dual of the microstrip ring antenna. The 
comparison is given in Figure 11.9 [20]. Analyses of slot ring antenna can be
found in [20, 21]. To use the structure as an antenna, the first-order mode 
is excited as shown in Figure 11.10, and the impedance seen by the voltage
source will be real at resonance. All the power delivered to the ring will 

FIGURE 11.6 Circular polarized ring antenna [17]. (Permission from IEEE.)
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be radiated [20]. The resonant frequency, which is the operating frequency,
can be calculated using the transmission-line model discussed earlier in the
previous chapters. Following the analysis by Stephan et al. [20], the far-field
radiation patterns and the input impedance at the feed point can be calcu-
lated.

Using the standard spherical coordinates r, q, and f to refer to the point at
which the field are measured, the far-field equations are [20]

(11.22)
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FIGURE 11.7 Dual-frequency stacked annular ring microstrip antenna [18]. (Permis-
sion from IEEE.)
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FIGURE 11.9 Comparison of (a) microstrip ring and (b) slot ring structures. (c)
Ground plane. (d) No ground plane [20]. (Permission from IEEE.)

FIGURE 11.8 Shorted annular ring antenna [19]. (Permission from Wiley.)

where and the linear combinations of the Hankel-transformed
estimates are used

(11.24)
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FIGURE 11.10 Slot ring feed method showing electric field [20]. (Permission from
IEEE.)

where the (n ± 1)th-order Hankel transforms are defined by

(11.26)

where Jn(ar) is the nth-order Bessel function of the first kind, a is the Hankel-
transform variable, and ri and ra are the inner and outer ring radii, respectively.
These integrals can be evaluated analytically using tables. At the center of the
ring, r = 0, n is the order of resonance being analyzed. In the case of interest,
n = 1 and w = w0 = the resonant frequency.

For the finite thickness of the dielectric substrate, the preceding equations
for field patterns need to be modified for better accuracy [20]. The input
impedance at the feed point can be calculated by [20]:

(11.27)

where P is the power given by

(11.28)

where Zfs is the intrinsic impedance of free space. An example of calculated
and measured E and H-plane patterns is given in Figure 11.11.
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FIGURE 11.11 Calculated and measured patterns for a 10-GHz slot ring antenna.
Inner ring radius = 0.39 cm, outer ring radius = 0.54 cm, dielectric er = 2.23, thickness 
= 0.3175 cm. All patterns are decibels down from maximum. (a) H-plane; (b) E-plane.
Key:– –calculated;—measured [20]. (Permission from IEEE.)



SLOTLINE RING ANTENNAS 313

Figure 11.12 shows a multifrequency annular slot antenna [8, 9]. A 
50-ohm microstrip feed is electromagnetically coupled to the slot ring at 
point A and is extended to the point C. The circuit was etched on a Keene
Cor-poration substrate with relative dielectric constant of 2.45 and height 
of 0.762 mm. The widths of the microstrip (wm) and slot ring (ws) were 
2.16 mm and 2.9 mm, respectively. The mean circumference of the slot ring is
93.3 mm.

Ignoring the microstrip feed and treating the slot-ring antenna as a trans-
mission line, one expects the operating frequency to be the frequency at which
the circumference of the slot-ring antenna becomes one guided wavelength of
the slot (lgs). Slot-guided wavelength for the frequency range of interest can
be obtained from [22]

(11.29)

where lo is the free-space wavelength and h is the thickness of the substrate.
At 2.97 GHz, lgs is equal to the mean circumference of the antenna (93.3 mm).
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FIGURE 11.12 The configuration of the multifrequency annular antenna.



314 RING ANTENNAS AND FREQUENCY-SELECTIVE SURFACES

1 2 3 4 5 6 7 8 9 10

Frequency (GHz)

–40

–30

–20

–10

0

R
et

ur
n 

Lo
ss

 (
dB

)

Measurement
Simulation

FIGURE 11.13 Measured and simulated return loss of the multifrequency antenna
with AC = 46.85 mm [8]. (Permission from IEEE.)

From this information, as a first-order approximation, first-operating fre-
quency of the slot-ring antenna is 2.97 GHz. The actual operating frequency
of the microstrip-fed slot-ring antenna can be above or below this approxi-
mate frequency depending on the length of the microstrip stub.

The return loss of the multifrequency antenna and simulation results agree
well and as shown in Figure 11.13. The simulation was carried out by electro-
magnetic simulator [23]. Defining the operating frequency to be a frequency
at which return loss is less than 10 dB, these experimental operating frequen-
cies are centered at 2.58, 3.9, 5.03, and 7.52 GHz. The measured patterns of the
antenna at resonant frequency of 2.65 GHz are shown in Figure 11.14.

11.5 ACTIVE ANTENNAS USING RING CIRCUITS

An active antenna was developed by the direct integration of a Gunn device
with a ring antenna as shown in Figure 11.15 [24]. The radiated output power
level and frequency response of the active antenna are shown in Figure 11.16.
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FIGURE 11.14 Radiation patterns of the multifrequency antenna with microstrip stub
length AC = 46.85 mm at 2.65 GHz [8]. (Permission from IEEE.)
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FIGURE 11.15 The active annular ring antenna integrated with Gunn diode [24].
(Permission from Wiley.)

FIGURE 11.16 Power output and frequency vs. bias voltage [24]. (Permission from
Wiley.)



316 RING ANTENNAS AND FREQUENCY-SELECTIVE SURFACES

The Friis transmission equation was used to calculate the power radiated from
the active ring [25, 26]. It can be seen that over 70-mW output power was
achieved with a bias of 16 V at 6.805 GHz. The Gunn diode used produced a
maximum of 100 mW in an optimized waveguide circuit.

An active antenna using a ring-stabilized oscillator coupled to a slot antenna
was reported [27]. The circuit configuration is shown in Figure 11.17. A circu-
lar microstrip ring is used as the resonant element of the oscillator. A slot on
the ground plane of the substrate coupled with the circular microstrip ring
served as the radiating element. A Gunn diode is mounted between the ring
and the ground plane of the substrate at either side of the ring. A metal mirror
block is introduced one-quarter wavelength behind the ring to avoid any back
scattering. The operating frequency of the active antenna was designed to be
close to the first resonant frequency of the circular microstrip ring. A radiated
power of +16 dBm at 5.5 GHz occurred at the bias level of 12.6 V. The radia-
tion patterns are shown in Figures 11.18 and 11.19.

An active slotline ring antenna integrated with an FET oscillator was also
developed [28]. Figure 11.20 shows the physical configuration. A simple 
transmission-line method was used to predict the resonant frequency. The
active antenna radiated 21.6 mW with 18% efficiency at 7.7 GHz.

FIGURE 11.17 Circuit configuration [27]. (Permission from IEEE.)
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FIGURE 11.18 E-plane pattern [27]. (Permission from IEEE.)
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The active antenna shown in Figure 11.21 consists of a Gunn diode and a
slotline-notch antenna stabilized with a slotline-ring resonator [29]. The Gunn
diode is placed across the ring resonator at a low-impedance point to meet the
conditions for oscillation [30]. The slotline ring’s resonant wavelength can be
determined from
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Aluminum Mount
(Heat Sink)

Gunn
Diode

100 ohm
Slotline RingGND

Notch
Antenna

V-Bias

(a) 

100 ohm
Slotline RingGND

Notch
Antenna

50 ohm CPW Feed

(b) 
FIGURE 11.21 Configuration of active antenna: (a) Gunn-diode active-notch antenna
using a slotline-ring resonator (the wire for dc bias to the center of the ring is not
shown) and (b) CPW-fed passive antenna (some dimensions in the figures are exag-
gerated to enhance detail) [29].

FIGURE 11.20 Circuit configuration of an FET active slotline ring antenna [28].
(Permission from Electronics Letters.)
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(11.30)

where r is the mean radius of the slotline ring, lg is the guide wavelength in
the slotline ring and n is the mode number.

Figure 11.21a shows the circuit configuration of the active antenna, whereas
Figure 11.21b shows the coplanar waveguide (CPW)-fed passive antenna
developed for radiation pattern comparison. The antennas were etched on
Duroid 5870 board with a relative dielectric constant of 2.33, substrate thick-
ness of 62 mils (1.575 mm), and 1-oz copper metallization. The antennas are
truly uniplanar, requiring no backplane for excellent performance. The 
slotline ring has a mean radius of 3.81 mm and a slot width of 0.18 mm. The
CPW feedline in the passive antenna has a center strip width of 1.2 mm and
symmetrical side gaps of 0.08 mm. A thin-wire air bridge is used to operate
the CPW line in the even mode. The slotline-notch antenna uses an exponen-
tial taper to match the impedance of the ring to free-space.The antenna length
is 6 cm, and the gap at the feed point is 0.18 mm. The aluminum mount used
in the active antenna also serves as the heat sink for the Gunn diode. The dc
bias is provided directly to the center of the slotline ring. The active antenna
radiates a clean spectrum at 9.26 GHz with a bias voltage of 10.0 V and draws
410 mA. The active antenna produces an effective power output of 27.1 mW
and an effective isotropic radiated power (EIRP) of 720.0 mW. The spectrum
has a phase noise of -95.33 dBc/Hz at 100 KHz from the carrier, and the
second harmonic radiation produced by the active antenna is 26.16 dB below
the fundamental frequency. Figure 11.22 shows the radiation patterns of the
active antenna.

The E-plane and H-plane patterns are smooth with cross-polarization levels
of 13.18 and 6.69 dB below copolarization. The radiation E-plane and H-plane
are 33° and 47°, respectively. The radiation pattern of the CPW-fed passive
antenna is essentially similar with the exception that the cross-polarization
levels are 18.74 and 16.51 or the E- and H-planes, respectively.

11.6 FREQUENCY-SELECTIVE SURFACES

Frequency-selective surfaces (FSSs) have found many applications in quasi-
optical filters, diplexers, and multiplexers. Many different element geometries
have been used for FSSs [31].They include dipole, square patch, circular patch,
cross dipole, Jerusalem cross, circular ring, and square loop. Figure 11.23 shows
these elements. A number of representative techniques for analyzing FSSs
have been reviewed in a paper by Mittra, Chan, and Cwik [31].

FFSs using circular rings or square loops have been studied extensively
[32–46]. For square loops, closed-form equations are available to design the
elements [39]. For example, the gridded square-loop element shown in.

Figure 11.24 can be represented by an equivalent circuit given in Figure
11.25. For a vertically incident electric field, an inductance L2 represents the

2 1 2 3p lr n for ng= = , , , . . .
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FIGURE 11.23 Some typical FSS unit cell geometries [31]. (a) Square patch.
(b) Dipole. (c) Circular patch. (d) Cross dipole. (e) Jerusalem cross. ( f) Square loop.
(g) Circular loop. (h) Square aperture. (Permission from IEEE.)
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FIGURE 11.22 E-plane radiation pattern: HPBW = 33°, cross-polarization = 13.18 dB
below copolarization and H-plane radiation pattern: HPBW = 47°, cross-polarization
= 6.69 dB below copolarization [29].

grid and a series-resonant inductance L1 and capacitance C represent the
squares.

The equations given below are used to design for the transmission and
rejection bands [39]. Solving for the circuit admittance, the transmission coef-
ficient is given by
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FIGURE 11.24 Unit cell for gridded square frequency-selective surface.

FIGURE 11.25 Equivalent circuit for the gridded FSS element.

where

The values of L1, L2, and C are given as
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where p, g, d, w1, and w2 are the dimensions defined in Figure 11.24.
The admittances can be solved for TE- and TM-incidence at oblique angles.

If the incident angle is assumed normal to the array plane, the resulting equa-
tions then become

where G is a correction term [39]. Similar design equations can be applied to
double-square elements as shown in Figure 11.26.

For circular ring elements shown in Figure 11.27, the model analysis
moment method or other numerical methods can be used to predict the per-
formance [37, 38, 40, 41]. Figure 11.28 shows typical results for a double-ring
FSS as a function of incident angles [38].

11.7 REFLECTARRAYS USING RING RESONATORS

Microstrip reflectarrays have been shown to be good candidates for replacing
conventional parabolic reflector antennas. The technologies involve a flat
printed array integrated with space-feeding horn and have the advantages of
low cost, low profile, easy fabrication, and flat surface [47].

Figure 11.29 shows the configuration of the reflectarray with a Ka-band feed
horn [48]. The reflectarray is constructed by ring resonators with two slits at
the top and the bottom. Comparing with the reflectarray using square patch
antennas, this configuration using ring antennas has wider bandwidth and can
reduce blockage when using in a dual-layer and dual-frequency application.
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FIGURE 11.26 Double-square element and its equivalent circuit.
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FIGURE 11.27 FSSs use circular ring elements. (a) Single ring. (b) Slot ring.
(c) Double ring.

Due to the nature of reflection, an incident right-hand circularly polarized
wave is reflected as a left-hand circularly polarized wave. However, by using
these two slits on the ring, the reversal of polarization can be canceled out.
Also, a simple trigonometric relation is used to calculate the required addi-
tional path lengths to create a parabolic phase front across an array’s surface.
Each ring antenna is rotated counterclockwise by f radians at each position
when 2f radians are needed for compensating these additional path lengths.
For the whole reflectarray, the repetitious behaviors of array configurations
are found to be more than four times of a 2p radian.

A 0.5-m reflectarray has been designed for broadside radiation at a focal
distance of 350 mm corresponding to a f/D ratio of 0.7. The ring antennas are
fabricated on an RT/Duroid 5870 substrate with er = 2.33 and 0.508 mm thick-
ness. The space between rings is 0.5 free-space wavelength, which is selected
to avoid grating lobes. The measured results at 31.75 GHz are shown in Figure
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FIGURE 11.28 H-plane transmission coefficients as a function of incident angles [38].
(a) q = 0°. (b) q = 30°. (c) q = 45°. Key: æ calculated values; ••• experimental results.
(Permission from Electronics Letters.)

11.30. The main beam has a beam width of 1.3°. The cross-polarization level
is 40.71 dB down at broadside, and the sidelobe suppression is greater than
19.47 dB occurring at 2°. This cross-polarization level corresponds to an axial
ration of less than 0.5 dB. The relative high peak sidelobe is due to feed horn
blockage effects.The measured efficiency of the reflectarray is shown in Figure
11.31. The efficiency is better than 40% from 31.5 to 32.5 GHz. The highest
efficiency is 50% at 31.75 GHz.
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(a) 

2.26 mm

0.4 mm

f

Gap: 0.28 mm
x

y

(b) 
FIGURE 11.29 Configuration of Ka-band reflectarray (a) setup and (b) ring antenna
[48]. (Permission from Electronics Letters.)
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12.1 INTRODUCTION

The previous chapters discuss the use of rings for resonators, measurements,
filters, couplers, magic-Ts, cavities, antennas, and frequency-selective surface
applications. This chapter introduces some ring mixers, oscillators, and other
applications.

12.2 RAT-RACE BALANCED MIXERS

The hybrid couplers described in Chapters 8 and 9 can be used to build bal-
anced mixers. One example is the microstrip rat-race balanced mixer using the
rat-race coupler discussed in Section 8.2. Figure 12.1 shows the physical con-
figuration of the microstrip rat-race hybrid-ring coupler. When a unit ampli-
tude wave is incident at port 4 of the hybrid coupler, this wave is divided into
two equal components at the ring junction. The two component waves arrive
in phase at ports 2 and 3, and 180° out of phase at port 1. Therefore, ports 1
and 4 are isolated. Similarly, a wave incident at port 1 is divided equally and
coupled to ports 2 and 3. The two component waves that both arrive at ports
2 and 3 are combined in phase. The combined wave at port 2 has a phase dif-
ference of 180° with the combined wave at port 3. The wave incident at port
1 will not be coupled to port 4 since the two component waves are 180° out
of phase. These properties are used to build the balanced mixer.



The single-balanced mixer consists of two diodes arranged so that the local
oscillator (LO) pump is 180° out of phase and the radio frequency (RF) signal
is in phase at the diodes, or vice versa. The balanced operation results in LO
noise suppression and provides a larger dynamic range and better inter-
modulation suppression compared with the single-ended mixer [1]. Figure 12.2
shows a rat-race hybrid-ring mixer. It consists of a hybridring coupler, two dc
blocks, two mixer diodes, two RF chokes, and a low-pass filter. The RF input
is split equally into two mixer diodes. The LO input is also split equally but is
180° out of phase at the mixer diodes. Both the LO and RF are mixed in these
diodes, which generate signals that are then combined through the ring and
taken out through a low-pass filter. The LO and RF ports are isolated. The RF
chokes provide a tuning mechanism and prevent the RF signal from leaking
into ground.

Because the microstrip hybrid ring coupler is bandwidth limited, only a 
10 to 20% bandwidth has been achieved using rat-race mixers. Rat-race 
mixers have been demonstrated up to 94 GHz. Figure 12.3 shows the circuit
of a 94-GHz rat-race mixer. A conversion loss of less than 8 dB was achieved
over a 3-GHz RF bandwidth using LO pump power of +8 dBm, and less 
than 6.5 dB with LO pump power of +10 dBm [2]. The results are given in
Figure 12.4. Wide-band mixers can be constructed using the broadband copla-
nar waveguide hybrid-ring couplers and magic-Ts described in Chapters 8 
and 9.
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FIGURE 12.1 Physical layout of the microstrip rat-race hybrid-ring coupler.
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FIGURE 12.2 Rat-race mixer configuration.

FIGURE 12.3 94-GHz rat-race mixer [2]. (Permission from IEEE.)



12.3 SLOTLINE RING QUASI-OPTICAL MIXERS

The slotline ring antenna discussed in Chapter 11 was used to build a quasi-
optical mixer [3]. Figure 12.5 shows the circuit arrangement. The RF signal
arrives as a horizontally polarized plane wave incident perpendicular to the
antenna. The LO signal is vertically polarized, and can arrive from either side
of the structure. VLO and VRF are the electric field vectors on the antenna plane.
By resolving each vector into two perpendicular components, it is easy to see
that the mixer diode D1 receives

while D2 receives

In effect, each diode has its own independent mixer circuit, with the inter-
mediate frequency (IF) outputs added in parallel. The IF signal appears as a
voltage between the central metal disk and the surrounding ground plane, and

V VLO RF

2
+

V VLO RF

2
-
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FIGURE 12.4 Performance of a 94-GHz rat-race mixer [2]. (Permission from IEEE.)



is removed through an RF choke. A double-balanced mixer with improved
isolation can be made by adding two additional diodes D3 and D4, as indicated.

The antenna-mixer has good LO-to-RF isolation, because of the symmetry
provided by the balanced configuration.A conversion loss of 6.5 dB was meas-
ured for this quasi-optical mixer operating at X-band [3]. Similar circuits were
recently analyzed using a nonlinear analysis [4].

12.4 RING OSCILLATORS

Since a ring circuit is a resonator, it can be used to stabilize an oscillator. Figure
12.6 shows a high-temperature superconductor ring-stabilized FET oscillator
built on LaAlO3 substrate [5]. The circuit exhibited an output power of 
11.5 dBm and a maximum efficiency of 11.7%. At 77 K, the best phase noise
of the superconductor oscillator was -68 dBc/Hz at an offset frequency of 10
kHz. This phase noise level is 12 dB and 26 dB less than the copper oscillator
at 77 K and 300 K, respectively. A similar circuit was demonstrated using a
high-electron mobility transistor (HEMT) device giving a phase noise of 
-75 dBc/Hz at 10 kHz from the carrier [6].

A voltage-tuned microstrip ring-resonator oscillator was reported to have
a tuning bandwidth of 30% [7]. The circuit employed two microwave mono-
lithic integrated circuit (MMIC) amplifiers as the active devices, and a tunable
microstrip ring resonator in the feedback path was designed to operate over
the frequency range of 1.5–2.0 GHz and fabricated with all the components
mounted inside the ring as shown in Figure 12.7. A varactor diode was

334 RING MIXERS, OSCILLATORS, AND OTHER APPLICATIONS

FIGURE 12.5 Antenna-mixer configuration [3]. (Permission from IEEE.)
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FIGURE 12.6 The physical layout of the reflection-mode oscillator on a 1-cm2 LaAlO3

substrate [5]. (Permission from IEEE.)

FIGURE 12.7 Layout of the microstrip ring resonator oscillator [7]. (Permission from
Electronics Letters.)
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FIGURE 12.8 Oscillation frequency vs. tuning voltage [7]. (Permission from Elec-
tronics Letters.)

mounted across the gap in the ring. By adjusting the bias voltage to the var-
actor, the resonant frequency of the ring was varied and the oscillation fre-
quency was thus tuned. Figure 12.8 shows the oscillation frequency as a
function of tuning varactor voltage, and Figure 12.9 shows the output power.
The frequency was adjusted from 1.533 to 1.92 GHz with the capacitance
changed from 0.44 to 3.69 pF. The oscillation frequency can be tuned down to
1.44 GHz, corresponding to a tuning range of 28.8% by slightly forward
biasing the diode with 1-mA current [7].

Dual-mode ring resonators were used to build low phase noise voltage-
controlled oscillators (VCOs) and oscipliers (oscillator plus multiplier) [8].
Figure 12.10 shows the VCO circuit configuration. Circuit 1 covers the lower
frequency band ranges, while circuit 2 covers the higher frequency band
ranges. Both oscillators are composed of a common dual-mode resonator and
two identical negative resistance circuits. Using a dual-mode resonator reduces
the variable frequency range to about one-half of the conventional one.
As a result, the phase noise of the oscillators are significantly improved.
Figure 12.11 shows the circuit configuration of osciplier [8]. The dual-mode
resonator can be used to obtain two outputs of the fundamental frequency 
fo and its second harmonic frequency 2fo, separately, with high isola-
tion between them. An osciplier with an output signal of 1.6 GHz was 
demonstrated with a fundamental suppression level of 18 dB [8].
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FIGURE 12.9 Output power vs. oscillation frequency [7]. (Permission from Electron-
ics Letters.)

FIGURE 12.10 Circuit configuration of a low phase noise VCO [8]. (Permission from
IEEE.)
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FIGURE 12.12 Feedback ring resonator oscillator [9]. (Permission from IEEE.)

Another type ring oscillator using feedback configuration is shown in
Figure 12.12. This configuration consists of a feedback ring circuit and a two-
port negative-resistance oscillator with input and output matching networks
[9]. The close-loop ring resonator using a pair of orthogonal feed lines sup-
presses odd resonant frequencies and operates at even resonant frequencies.
This operation has a similar characteristic of high operating resonant 
frequencies as that of the push-push oscillators [10, 11]. Also, the high Q ring
resonator is used to reduce the noise of the two-port negative-resistance oscil-
lator.

To investigate the high-frequency operation of the ring circuit, an orthog-
onal feed ring resonator is shown in Figure 12.13. As seen in Figure 12.13, the
closed-loop ring resonator with total length of l = nlg is fed by two orthogo-
nal feed lines, where n is the mode number and lg is the guided-wavelength.

The ring resonator fed by the input and output feed lines represents a shunt
circuit, which consists of the upper and lower sections of l1 = 3nlg/4 and l2 =

FIGURE 12.11 Circuit configuration of an osciplier [8]. (Permission from IEEE.)



nlg/4, respectively. The ABCD matrixes of the upper and lower sections of the
lossless ring circuit are given by

(12.1a)

and

(12.1b)

where b is the propagation constant and Zo = 1/Yo is the characteristic imped-
ance of the ring resonator. The Y parameters of the upper and lower sections
are obtained from (12.1a) and (12.1b) and given by

(12.2)

where j = upper or lower is for upper or lower sections. In addition, the total
Y parameter of the whole circuit is expressed as

(12.3)

Furthermore, S21 of the ring circuit can be found from (12.3) and is expressed
as
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FIGURE 12.13 Configuration of the ring resonator fed by two orthogonal feed lines
[9]. (Permission from IEEE.)



(12.4)

For odd-mode excitation

(12.5a)

and for even-mode excitation

(12.5b)

The calculated results in (12.5) show that the ring resonator fed by two
orthogonal fed lines can suppress the odd mode resonant frequencies and
operate at even mode resonant frequencies only. This operation has a similar
characteristic of high operating resonant frequencies as that of the push-push
oscillator [10, 11]. Figure 12.14 shows the layout of the ring circuit using two
orthogonal feed lines with coupling gap size of s.This ring circuit was designed
at the fundamental mode of 6 GHz and fabricated on a 20-mil-thick
RT/Duroid 5870 substrate with a relative dielectric constant of er = 2.33.
The dimensions of the ring circuit are l1 = 27.38 mm, l2 = 9.13 mm, lf = 8 mm,
w = 1.49 mm, and s = 0.2 mm.

The measured and simulated results of this circuit are shown in Figure
12.15. The simulation is performed using an IE3D EM simulator [12]. Observ-
ing the measured and simulated results, they agree well with each other. The
results also agree with the predictions given by (12.5).The measured unloaded
Q of the ring resonator is 125.2.
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By using the characteristic of the high resonant frequency operation shown
in Figure 12.15, the feedback oscillator shown in Figure 12.12 can oscillate at
high oscillation frequency. The active device used in the oscillator is a NE
32484A HEMT. The dimensions of the oscillator are l3 = 3 mm, l4 = 6.95 mm,
l5 = 15.19 mm, l6 = 10.69 mm, l7 = 7.3 mm, l8 = 9.47 mm, and l9 = 21.19 mm. The
two-port negative-resistance oscillator uses the one-open-end S terminal as a
series-feedback element to obtain a potential instability. Also, with the input
and output matching network, the two-port oscillator with an applied bias of
of Vgs = -0.65 V and Vds = 1 V has a negative resistance around 12 GHz.
Inspecting the equation of the DC-to-RF efficiency in Equation (12.6), if the
decreasing rate of IdsVds is faster than that of the RF output power, Pout, then
oscillators can possibly research to a high DC-to-RF efficiency.

(12.6)

Observing Equation (12.6), the maximum efficiency can be obtained by select-
ing a low Vgs and Vds. The highest DC-to-RF efficiency of the oscillator of
41.4% is obtained with output power of 6.17 dBm at the oscillation frequency
of 12.104 GHz.

Figure 12.16 shows the measured spectrum of the oscillator with applied
voltages of Vgs = -0.65 V and Vds = 1 V. Also, as shown in Figure 12.16, the
oscillator is operated at the second harmonic of the ring resonator. The oscil-
lator has the efficiency of 48.7% with output power of 3.41 mW at 12.09 GHz.
The phase noise of the oscillator is -96.17 dBc/Hz at offset frequency of 
100 KHz. The second and third harmonics of the oscillator are 22.8 dB and
15.1 dB down from the fundamental oscillation frequency.

Efficiency = ( ) = ¥h % %
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These harmonics have less effect on the fundamental oscillation frequency.
Comparing with other oscillators [13], this oscillator provides a high DC-to-
RF efficiency.

Figure 12.17 shows the configuration of the ring resonator oscillator inte-
grated with a piezoelectric transducer (PET) with an attached dielectric per-
turber. When applying a DC voltage to the PET, the PET move the perturber
up or down vertically to change the effective dielectric constant of the ring
resonator [9, 14], and thus vary the resonant frequency of the ring resonator.

Figure 12.18 shows the measured results of the oscillator using the PET
tuning.The perturber attached on the PET has a dielectric constant of er = 10.8
and a thickness of h = 50 mil. The tuning range of the oscillator is from 
11.49 GHz (+90 V) with a power output of 3.17 dBm to 12 GHz (0 V) with a
power output of 5.33 dBm.

Figure 12.19 shows the tunable oscillation frequencies and output power
levels versus PET tuning voltages. As seen in Figure 12.19, the PET tuning
range is about 4.25% around the oscillation frequency of 12 GHz, and the
output power is varied from 2.67 to 5.33 dBm. This good tuning rage is due to
a large area perturbation on the whole ring that significantly tunes the reso-
nant frequency of the ring. In addition, by using a higher dielectric perturber,
a wider tuning range and a lower DC applied voltage could be achieved [15].

12.5 MICROWAVE OPTOELECTRONICS APPLICATIONS

An optical control in microwave ring devices has been developed for its poten-
tial applications in signal switching, mixing, and frequency modulation. Fur-
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FIGURE 12.17 Configuration of the tunable oscillator using a PET: (a) top view and
(b) 3D view [9]. (Permission from IEEE.)

thermore, microwave-optoelectronic mixers fabricated on GaAs substrate
have been reported [16–19]. The layout of the circuit is illustrated in Figure
12.20. Since the Q-factor of the ring resonator is better than that of the linear
resonator, the ring was chosen for experiments. The circuit is fabricated on
semi-insulating GaAs.

Resonances were measured to occur at 3.467 GHz, 7.18 GHz, and 
10.4 GHz. Corresponding loaded Q-factors are 45, 58, and 74. Two 4-mm slits
are introduced at diametrically opposite locations of the ring for optical exci-
tation. These slits are designed to be collinear with the feed lines so that mode
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configuration of this resonator is identical to that of the completely closed ring.
The dimensions of the coupling gaps between the feed lines and the resonator
were chosen to be 30 mm and 100 mm, respectively. In this configuration, the
microwave LO excitation is applied via the more loosely coupled 100-mm gap
and the output signal is extracted across the 30-mm gap. It is thus ensured that
whereas the LO signal is loosely coupled into the resonator, extraction of the
output signal is more efficient due to the tighter coupling associated with the
30-mm gap.
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FIGURE 12.20 Layout of ring resonator circuit [19]. (Permission from IEEE.)

The test setup is illustrated in Figure 12.21.When a modulated optical signal
from a laser diode is applied to one of the slits of the ring resonator, an RF
voltage is induced. By virtue of the ring’s moderately high Q-factor, the man-
ifestation of this phenomenon is enhanced when the circumference of the 
ring becomes an integral multiple of the wavelength corresponding to 
the RF signals. The RF signal is the modulating signal to the optical carrier.
When a larger amplitude LO microwave signal is applied to the feed line of
the circuit, this signal is mixed with the RF optical signal if both the LO and
RF frequencies are at the ring’s resonance; the down-converted IF difference
signal is obtained from the bias pad of the circuit. When the IF signal at base-
hand is extracted from the bias pad, the circuit is said to be operated in the
“resistive mixing” mode, as the circuit operation in this case involves the mod-
ulation of the conductance of the detector diodes. For operation in this mode,
the RF and LO ports are mutually isolated and the low-pass filter automati-
cally suppresses the image frequency.

The Ortel SL 1010 laser diode, with an operating wavelength of 0.84 mm



and a threshold current of 6.6 mA, is biased at 9 mA and operated with an
input-modulated power of -14 dBm at 3.467 GHz. If either one of the RF or
LO frequencies is tuned away from resonance, the IF signal strength at the
bias pad gradually decreases. This is illustrated in Figure 12.22. As can be seen,
the peak of the IF signal output occurs when the LO is close to the ring’s res-
onance; when tuned out of resonance, the strength goes down. Similar effects
were observed in varying the RF.

In the “parametric mode,” sum and difference frequencies in the microwave
band are extracted from the feed line of the circuit. For operation in this mode,
the ring should resonate at the RF, LO, and IF frequencies. Both degenerate
and nondegenerate parametric amplification of the optical carrier signal can
take place [19].
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FIGURE 12.21 Experimental test setup [19]. (Permission from IEEE.)

FIGURE 12.22 IF power output vs. LO frequency [19]. (Permission from IEEE.)
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FIGURE 12.23 (a) Plan view of a split ring showing definitions of distances and (b)
sequence of split rings shown in their stacking sequence [22]. (Permission from IEEE.)

12.6 METAMATERIALS USING SPLIT-RING RESONATORS

The metamaterials with simultaneously negative permittivity and permeabil-
ity (e < 0 and m < 0) were proposed by Veselago in the late 1960s [20]. He
termed the metamaterial with simultaneously negative permittivity and per-
meability as “left-handed material” (LHM) because the vectors E, H, and k
form a left-handed triplet. Also, the wave vector k and Poynting vector are
anti-parallel, which shows a reversal of Snell’s law [21]. However, these simul-
taneously negative permittivity and permeability were only derived from
mathematics without any experimental proofs because the negative permit-
tivity and permeability do not exist in the nature world.

Recently, many papers have been published for the matematerials [21–25].
By using a periodic split-ring resonator array, a negative permeability can be
obtained [22]. Also, some propose the negative refraction index by using 
periodically L-C loaded transmission line [24, 25]. However, despite those
incredible reports in LHM, there are some attempts to debunk all of these
experiments [26–29].

Figure 12.23 shows the one unit of split-ring resonator arrays. The unit 
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resonator consists of two concentric rings, and each has a split that is used to
prevent current from flowing around any ring.The inside ring is used to induce
capacitances to make current flow to the ring. The capacitance between tow
rings is given by [22]

(12.7)

where c is the width of the ring, d is the gap size between tow rings, and co is
the speed of light in free space.Also, the effective permeability is given by [22]
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FIGURE 12.24 (a) Plain view and (b) 3D view of a split rings structure in an array
(lattice spacing a) [22]. (Permission from IEEE.)
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(12.8)

where s1 is the resistance of unit length of the sheets measured around the
circumference, r is the radii of the inside ring, and a is the distance between
two split-ring resonators (SRR), as shown in Figure 12.24. The plotting of meff

is shown in Figure 12.25 by using parameters of a = 1.0 ¥ 10-2 m, c = 1.0 ¥
10-3 m, d = 1.0 ¥ 10-4 m, l = 2.0 ¥ 10-3 m, and r = 2.0 ¥ 10-3 m. It can be found
the effective negative permeability is around 13.6 GHz within a narrow band.
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input impedance formulation, 303–305
wall admittance calculation, 300–303

Annular ring resonators:
annular ring element, regular resonant

modes, 56–58
coupling methods, 75–77
transmission-line model, frequency modes,

29–32
Antisymmetric excitation, transmission-line

ring resonator model, coupling gap
equivalent circuit, 17–22

Approximations, ring antenna construction,
298–299

Asymmetric coplanar strip (ACPS) hybrid-
ring couplers:

branch-line couplers, 233–237
reverse-phase 180º hybrid-ring couplers,

226–227
structure and properties, 209–211

Asymmetric ring resonators, notch
perturbation, 67–70

Asymmetric step capacitance, wideband
bandpass filter, 167–171

Attenuation constants:
closed- and open-loop microstrip ring

resonators, equivalent lumped-
elements, 39–40

distributed-circuit ring resonator model,
47–51

Back-to-back baluns:
coplanar waveguide resonators, 214–217
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coplanar waveguide (CPW)-slotline 180º
reverse-phase hybrid-ring couplers,
219–223

Bandpass filters:
electronically switchable ring resonators,

127
frequency measurements, linear resonators,

141–145
ring resonator filtering:

dual-mode ring, 153–161
narrow-band elliptic function filters,

187–188
piezoelectric transducer-tuned bandpass

filters, 186–187
slow-wave filters, 171–178
two transmission zeros, 179–186

wideband filters, 164–171
Bandstop characteristic, ring bandstop filters,

161–164
Bessel function:

magnetic-wall ring resonator model,
transverse magnetic field, 8–9

slotline ring antennas, 311–314
symmetric ring resonator, notch

perturbation, 68–70
Bias lines, varactor-tuned microstrip ring

circuit, input impedance and frequency
response, 104–109

Bias voltage, active annular ring antenna,
314–319

Bisection method, transmission-line ring
resonator model, frequency solution,
27–29

Boundary conditions:
forced resonant modes:

annular ring element, 58–61
waveguide ring resonators,

284–285
magnetic-wall ring resonator model, 9

degenerate modes, 9–10
rigorous solutions, 15–16

Bow-tie configuration, varactor-tuned
microstrip ring circuits, 113–115

Branch-line (90º) couplers, structure and
properties, 227–237

asymmetrical coplanar strip branch-line
couplers, 233–237

CPW-slotline branch-line couplers,
231–233

microstrip branch-line couplers,
227–231

Bulk resistance, varactor-tuned 
resonator, package parasitic 
effects, 111–112

Bypass capacitor, varactor-tuned microstrip
ring circuit, input impedance and
frequency response, 104–109

Capacitance:
closed- and open-loop microstrip ring

resonators, 37–40
double varactor-tuned microstrip ring

resonator, 115–117
ring bandstop filters, 164
slow-wave bandpass structure, 174–178
transmission-line ring resonator model,

coupling gap equivalent circuit, 16–22
varactor-tuned resonator:

equivalent circuit, 100–103
package parasitic effects, 109–112

Capacitive coupling, uniplanar ring
resonators, 85–90

Cascaded multiple ring resonators:
dual-mode ring bandpass filters, 159–161
ring bandpass filters, 184–186
slow-wave bandpass structure, 176–178
wideband bandpass filter, 169–171

Charge distribution evaluation, transmission-
line ring resonator model, capacitance
measurement, 16–22

Charge reversal method, transmission-line
ring resonator model, coupling gap
equivalent circuit, 17–22

Circuit model:
microwave optoelectronics applications,

344–346
ring antennas, 298–307

approximations and fields, 298–299
computer simulation, 306–307
input impedance:

dominant formulation for, 303–305
overall impedance, 306

reactive terms, 305–306
wall admittance calculation, 300–303

Circular polarization:
dual-frequency ring antennas, 307–308
frequency-selective surfaces (FSSs),

319–322
reflectarrays, 322–326

Circular rings:
frequency-selective surfaces, 319–324
reflectarrays, 322–326

Closed-form equations:
distributed transmission-line ring resonator

model, microstrip dispersion, 43
ring resonator measurements, 144–145
transmission-line ring resonator model,

coupling gap equivalent circuit, 21–22
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Closed-loop microstrip ring resonators:
calculation and experimental results,40
equivalent lumped elements, 36–40

Closed rectangular waveguide, waveguide ring
resonators, 275–276

Coaxial-to-microstrip transitions, discontinuity
measurements, 145–147

Compact bandpass filter, applications, 164–171
Computer-aided-design (CAD):

ring filter mode suppression, 191–193
ring resonator modeling, 5–6

Computer simulation, annular ring antenna,
input impedance, 306–307

Conductance measurements, closed- and
open-loop microstrip ring resonators,
37–40

Conductor losses, wideband bandpass filter,
164–171

Continuous functions, transmission-line ring
resonator model, bisection method,
frequency solution, 28–29

Coplanar strips (CPS):
asymmetrical branch-line couplers, 233–237
asymmetrical coplanar strip hybrid-ring

couplers, 209–211
Coplanar waveguide (CPW) resonators:

active/passive ring antennas, 318–319
coupling methods, 85–90
magic-Ts, 244–254
180º reverse-phase CPW-slotline T-

junctions, 243–244
reduced-size uniplanar 180º reverse-phased

hybrid-ring couplers, 223–226
reverse-phase back-to-back baluns,

212–217
varactor-tuned uniplanar ring resonators,

117–123
Coplanar waveguide-slotline hybrid-ring

couplers:
branch-line couplers, 231–233
180º reverse-phase hybrid-ring couplers,

217–223
structure and properties, 203–209

Coupled split mode, ring resonators, 63–64
Coupling capacitance:

electronically switchable ring resonators,
microstrip ring resonators, 134–138

transmission-line ring resonator model:
coupling gap equivalent circuit, 21–22
transmission-line equivalent circuit,

22–25
Coupling gap:

dual-mode ring bandpass filters, 155–161
effects on ring resonators, 77–81

electronically switchable ring resonators,
microstrip ring resonators, 133–134

ring bandpass filters, 181–186
ring resonators, 77–81

measurement applications, 144–145
transmission-line ring resonator model:

equivalent circuit, 16–22
ring equivalent circuit and input

impedance, 25–27
varactor-tuned microstrip ring circuit, input

impedance and frequency response,
103–109

Coupling methods:
loose coupling, ring resonator models,

6–7
microstrip ring resonators, 75–77
uniplanar ring resonators, 85–90

Curvature effect:
distributed transmission-line ring resonator

model, 44–45
magnetic-wall ring resonator model:

field analyses, 7–9
relative permittivty, 12–13

waveguide ring resonators, 273–276
Cutoff frequency, waveguide ring resonators,

regular resonant modes, 281

DC block capacitor:
varactor-tuned microstrip ring circuit, input

impedance and frequency response,
103–109

varactor-tuned microstrip ring circuits,
113–115

Decoupled resonant modes, waveguide ring
filters, 287–288

Degenerate modes, ring resonator
discontinuity measurements, 145–147

Dielectrically shielded ring resonator,
enhanced coupling, 84

Dielectric constant:
annular ring antenna, 298
distributed transmission-line ring resonator

model, 42–43
dual-mode ring bandpass filters, 155–161
piezoelectric transducer-tuned microstrip

ring resonator, bandpass filters,
186–187

ring resonator measurement, 139–145
slotline ring antennas, 311–314

Discontinuity measurements, ring resonator
applications, 145–147

Dispersion measurement, ring resonator
applications, 139–145

split mode measurements, 149–151
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Distributed-circuit model, distributed
transmission-line ring resonator,
45–51

Distributed transmission-line ring resonator
model, 40–51

curvature effect, 44–45
distributed-circuit model, 45–51
forced resonant modes, 59–61
microstrip dispersion, 41–43
notch perturbation, 69–70

Dominant mode calculations, annular ring
antenna, 303–305

reactive terms, 305–306
Double-sided ground planes, reverse-phase

back-to-back baluns, 211–217
Double-sided magic-T, basic structure, 243
Double-sided slotline rat-race hybrid-ring

coupler, coplanar waveguide-slotline
hybrid-ring couplers, 206–209

Double-sided (180º) slotline ring magic-Ts,
structure and applications, 254–258

Double varactor-tuned microstrip ring
resonator, basic components, 115–117

Dual-frequency ring antennas:
circular polarization, 307–308
slotline ring structure, 308–314

Dual microstrip ring antenna, 297
Dual-mode excitation:

dual-mode ring bandpass filters, 155–161
enhanced coupling ring resonators, 82–84
ring bandpass filters, 153–161
slotline ring filters, 189–191
transmission-line ring resonator, 34–35
waveguide ring filters, 289–295

decoupled resonant modes, 287–288
single-cavity dual-mode filters, 289–292
two-cavity dual-mode filters, 292–295

wideband bandpass filter, 167–171

Effective isotropic radiated power (EIRP),
active/passive ring antennas, 318–319

Effective permittivity, ring resonator
dispersion measurements, 140–145

E-field distribution:
CPW magic-Ts, 244–254
double-sided (180º) slotline ring magic-Ts,

254–258
reduced-size uniplanar magic-Ts, 262–269
reverse-phase back-to-back baluns, 214–217
tapered-line magic-T, 241–243
uniplanar-slotline ring magic-Ts, 258–262
waveguide ring filters:

decoupled resonant modes, 287–288
single-cavity dual-mode filters, 289–292

waveguide ring resonators:
regular resonant modes, 276–281
split resonant modes, 281–283

Electromagnetic fields, magnetic-wall 
ring resonator model, field analyses,
8–9

Electromagnetic simulation:
one-port ring resonator errors, 33–34
ring bandstop filters, 161–164

Electronically switchable ring resonators:
basic components, 127–128
microstrip ring resonator:

analysis, 130–131
experimental/theoretical results,

131–134
varactor-tuned switchable resonators,

134–138
PIN diode equivalent circuit, 128–130

Electronically tunable ring resonators:
basic principles, 97–98
double varactor-tuned microstrip ring

resonator, 115–117
package parasitic effects, resonant

frequency, 109–112
piezoelectric transducer-tuned microstrip

ring resonator, 124–125
bandpass filters, 186–187

sample analysis, 98–99
varactor equivalent circuit, 99–103
varactor-tuned microstrip ring circuit:

experimental results, 112–115
input impedance and frequency response,

103–109
varactor-tuned uniplanar ring resonator,

117–123
Elliptic-function bandpass filters, narrowband

structure, 187–188
End-to-side coupling, transmission-line ring

resonator model, coupling gap
equivalent circuit, 16–22

Enhanced coupling:
microstrip ring resonators, 75–77
ring resonators, 81–84

E-plane waveguide ring cavity:
waveguide ring filters, two-cavity dual-

mode filters, 292–295
waveguide ring resonators, 272–276

regular resonant modes, 278–281
Equivalent circuits:

coplanar waveguide (CPW)-slotline 180º
reverse-phase hybrid-ring couplers,
217–223

coplanar waveguide-slotline branch-line
couplers, 232–233
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Equivalent circuits (Continued)
coupling gap, ring resonators, 79–81
CPW magic-Ts, 246–254
electronically switchable ring resonators:

microstrip ring resonators, 130–131
PIN diodes, 128–130

frequency-selective surfaces (FSSs),
319–322

lumped elements, 35–40
ring bandstop filters, 163–164
slow-wave bandpass structure, 173–178
transmission-line ring resonator model:

coupling gap, 16–22
ring equivalent circuit and input

impedance, 25–27
transmission-line equivalent circuit,

22–25
uniplanar-slotline ring magic-Ts, 258–262
varactor-tuned resonator, 99–103
waveguide ring filters, two-cavity dual-

mode filters, 292–295
wideband bandpass filter, 166–171

Even-coupled slotline modes, coupling
methods, 88–90

Even-mode incidence, ring resonator
discontinuity measurements, 145–147

Even-odd-mode method:
microstrip branch-line couplers, 227–231
microstrip rat-race hybrid-ring couplers,

198–203
Extra charge calculations, transmission-line

ring resonator model, coupling gap
equivalent circuit, 20–22

Far-field equations, slotline ring antennas,
309–314

Feedback configuration, ring oscillators,
338–342

Fermi levels:
electronically switchable ring resonators,

PIN diode equivalent circuit, 128–130
varactor-tuned resonator, equivalent circuit,

100–103
Field effect transistor (FET):

ring antennas, active antenna structure,
316–318

ring oscillators, 334–342
Field parameters, ring antenna construction,

298–299
Filter applications, ring resonators:

basic principles, 153
compact, low insertion loss, sharp rejection,

and wideband bandpass filters,
164–171

dual-mode ring bandpass filters, 153–161
mode suppression, 191–193
narrow-band elliptic-function bandpass

filters, 187–188
piezoelectric transducer-tuned bandpass

filters, 186–187
ring bandstop filters, 161–164
slotline ring filters, 188–191
slow-wave bandpass filters, 171–178
two transmission zeros bandpass filters,

179–186
Forced resonant modes:

annular ring element, 58–61
ring resonator measurements, 147–149
waveguide ring resonators, 283–285

Forward-biased condition, electronically
switchable ring resonators:

microstrip ring resonators, 130–134
varactor-tuned microstrip resonators,

134–138
Fourier-Bessel integrals, magnetic-wall ring

resonator, 15–16
Fourier expansion, annular ring antenna, wall

admittance calculation, 302–303
Frequency-dependent solutions, magnetic-wall

ring resonator, 14–16
Frequency response measurements:

active annular ring antenna, 314–319
CPW magic-Ts, 250–254
dual-mode ring bandpass filters, 155–161
one-port ring resonator errors, 32–36
reduced-size uniplanar magic-Ts, 267–269
reverse-phase back-to-back baluns, 214–217
ring resonator dispersion calculations,

141–145
slotline ring antennas, 313–314
transmission-line ring resonator model,

29–32
basic equations, 27–29
input impedance, 26–27

uniplanar-slotline ring magic-Ts, 260–262
varactor-tuned microstrip ring circuit,

103–109
waveguide ring filters:

decoupled resonant modes, 287–292
single-cavity dual-mode filters, 291–292
two-cavity dual-mode filters, 292–295

waveguide ring resonators, regular resonant
modes, 277–281, 279–281

wideband bandpass filter, 166–171
Frequency-selective surfaces (FSSs):

basic properties, 319–322
reflectarrays using ring resonators,

322–326
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Frequency splitting:
magnetic-wall ring resonator model,

degenerate modes, 10
Frequency-splitting:

ring resonant measurements, split mode
measurements, 151

Fringing fields, frequency measurements,
linear resonators, 142–145

Full-wavelength resonant modes, ring
resonator measurements, 148–149

Gap size, ring bandpass filters, 183–186
Green’s function, transmission-line ring

resonator model, coupling gap
equivalent circuit, 18–22

Gunn diode, active annular ring antenna,
314–319

Hairpin resonators, ring bandpass filters,
179–186

Half-modes:
electronically switchable ring resonators,

127–128
varactor-tuned microstrip resonators,

134–138
ring resonator measurements,

148–149
varactor-tuned microstrip ring circuit,

114–115
input impedance and frequency response,

107–109
Hankel-transformed estimates, slotline ring

antennas, 310–314
H-arm configuration:

CPW magic-Ts, 244–254
reduced-size uniplanar magic-Ts, 262–269
tapered-line magic-T, 241–243
uniplanar-slotline ring magic-Ts, 258–262

Harmonic effects, voltage-controlled ring
oscillators, 340–342

Helmholtz equation, magnetic-wall ring
resonator, 14–16

H-plane waveguide ring cavity:
waveguide ring filters, decoupled resonant

modes, 288
waveguide ring resonators, 272–276

regular resonant modes, 278–281
split resonant modes, 282–283

Impedance. See Input impedance
asymmetric coplanar strip (ACPS) branch-

line coupler, 233–237
coplanar waveguide-slotline hybrid-ring

couplers, 207–209

CPW magic-Ts, 248–254
electronically switchable ring resonators,

microstrip ring resonators, 130–131
uniplanar-slotline ring magic-Ts, 259–262

Impedance matrix, distributed-circuit ring
resonator model, 48–51

IMSL library, varactor-tuned microstrip ring
circuit, input impedance and frequency
response, 106–109

Inductance:
varactor tuned resonator:

equivalent circuit, 103
package parasitic effects, 110–112

wideband bandpass filter, 167–171
Inductively-coupled ring resonator, coupling

methods, 87–90
In-phase mode coupling:

CPW magic-Ts, 250–254
double-sided (180º) slotline ring magic-Ts,

254–258
reduced-size uniplanar magic-Ts, 266–269
uniplanar-slotline ring magic-Ts, 259–262

Input admittance:
dual-mode ring bandpass filters, 160–161
varactor tuned resonator, 98–99

Input coupling gap, varactor-tuned uniplanar
ring resonators, 118–123

Input impedance:
annular ring antenna, 303–305

computer simulation, 306–307
overall impedance calculations, 306

closed- and open-loop microstrip ring
resonators, 36–40

slow-wave bandpass structure, 171–178
transmission-line ring resonator model, ring

equivalent circuit, 25–27
varactor-tuned microstrip ring circuit,

103–109
Insertion loss:

CPW magic-Ts, 250–254
dual-mode ring bandpass filters,158–161
electronically switchable ring resonators,

microstrip ring resonators, 133–134
enhanced coupling and reduction of,

81–84
Q-factor measurement, 143–145
reverse-phase back-to-back baluns, 214–217
ring bandpass filters, 180–186
slotline ring filters, 189–191
varactor-tuned uniplanar ring resonators,

118–123
wideband bandpass filter, 164–171

Intermediate frequency (IF) outputs, slotline
ring quasi-optical mixers, 333–334
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Isolation:
asymmetric coplanar strip (ACPS) branch-

line coupler, 234–237
coplanar waveguide-slotline structures:

branch-line couplers, 232–234
180º reverse-phase hybrid-ring couplers,

222–223
electronically switchable ring resonators,

microstrip ring resonators, 131,
133–134

reduced-size uniplanar 180º reverse-phased
hybrid-ring couplers, 224–226

Junction capacitance, varactor-tuned
resonator, equivalent circuit, 100–103

Ka-band feed horn, reflectarrays, 322–326

Left-handed material (LHM), split-ring
resonators, 347–349

L-EQ2C subroutine, varactor-tuned
microstrip ring circuit, input
impedance and frequency response,
106–109

Linear resonators, frequency measurements,
141–145

Line charges, transmission-line ring resonator
model, coupling gap equivalent circuit,
19–22

Line-to-ring coupling, slow-wave bandpass
structure, 173–178

L-network capacitance:
coupling gap, 78–81
slow-wave bandpass structure, 174–178

Loaded-Q values, uniplanar ring resonators,
85–90

Local oscillator (LO) pump:
microwave optoelectronics applications,

344–346
single-balanced ring mixer, 331–333
slotline ring quasi-optical mixers,

333–334
Local resonant sector (LRS):

annular ring element, 64–66
ring resonant measurements, 150–151

Local resonant split mode:
measurement applications, 150–151
ring resonators, 64–66

Longitudinal section electric (LSE) mode,
distributed transmission-line ring
resonator model, 41–43

Longitudinal section magnetic (LSM) mode,
distributed transmission-line ring
resonator model, 41–43

Loose coupling:
distributed-circuit model, 45–51
microstrip ring resonators, 75–77
ring resonator measurements, 140–145
ring resonator models, 6–7

Loss-free lines, transmission-line ring
resonator model:

frequency modes, 31–32
transmission-line equivalent circuit, 24–25

Low insertion loss, wideband bandpass filter,
164–171

Lowpass filter (LPF), mode suppression,
191–193

L-shaped coupling arm, dual-mode ring
bandpass filters, 154–161

Lumped-parameter-equivalent two-port
network:

closed- and open-loop microstrip ring
resonators, 36–40

transmission-line ring resonator model:
ring equivalent circuit and input

impedance, 25–27
transmission -line equivalent circuit,

22–25

Magic-T circuits:
basic components, 241–243
coplanar waveguide magic-Ts, 244–254
180º double-sided slotline ring magic-Ts,

254–258
180º reverse-phase coplanar waveguide-

slotline T-junctions, 243–244
180º uniplanar slotline ring magic-Ts,

258–262
reduced-size uniplanar magic-Ts,

262–269
Matched waveguide double-T, applications,

241–243
Matrix inversion method, transmission-line

ring resonator model, charge
distribution evaluation, 16–22

Maximum tuning range, waveguide ring
resonators, forced resonant modes,
283–285

Maxwell’s equations:
magnetic-wall ring resonator model:

degenerate modes, 9–10
transverse magnetic field, 8–9

transmission-line ring resonator model,
dual modes, 34–35

Mean circumference, ring resonator
measurements, 140–145

Mean radius calculation, distributed-circuit
ring resonator model, 46–51
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Measurement applications, ring resonators:
discontinuity measurements, 145–147
dispersion, dielectric constant, and Q-factor

measurements, 139–145
forced modes, 147–149
research background, 139
split modes, 149–151

Metamaterials, split-ring resonators,
347–349

Microelectromechanical system (EMS),
piezoelectric-transducer tuned
microstrip ring resonator, 124–125

Microstrip baluns, reverse-phase back-to-back
baluns, 211–217

Microstrip dispersion, 41–43
Microstrip gap:

distributed-circuit ring resonator model,
46–51

transmission-line ring resonator model:
coupling gap equivalent circuit, 16–22

Microstrip reflectarrays, ring resonator
applications, 322–326

Microstrip ring antenna:
dual structure, 297
slotline ring antenna, 308–314

Microstrip ring resonators:
closed- and open-loop, equivalent lumped

elements, 36–40
coupling methods, 75–77
discontinuity measurements, 145–147
distributed-circuit model, 45–51
double varactor-tuned microstrip ring

circuit, 115–117
electronically switchable resonators:

analysis, 130–131
experimental and theoretical results,

131–134
varactor-tuned microstrip resonators,

134–138
filter applications, mode suppression,

191–193
hybrid-ring couplers:

branch line couplers, 227–231
rat-race hybrid-ring couplers, 197–203
single-balanced ring mixer, 331–333

magnetic-wall ring resonator,
improvements, 11–13

measurement applications, dispersion,
dielectric constant, and Q-factor,
139–145

piezoelectric transducer-tuned microstrip
ring resonator, 124–125

slit (gap) perturbations, 70–75
slow-wave bandpass filters, 171–178

structure, 2–4
resonator mode chart, 11

varactor-tuned microstrip ring circuit:
experimental results, 112–115
input impedance and frequency response,

103–109
voltage-tuned microstrip ring-resonator

oscillator, 334–342
wideband bandpass filter, 164–171

Microstrip slotline transition, capacitive
coupling, 85–90

Microwave integrated circuits (MIC):
asymmetrical coplanar strip hybrid-ring

couplers, 209–211
microstrip line, 2–4

Microwave optoelectronics ring devices,
342–346

Modal voltages and currents, ring antenna
construction, 299

Model verification, transmission-line ring
resonator model, 29

Mode phenomena:
ring resonators:

forced resonant modes, 58–61
notch perturbations, 67–70
regular resonant modes, 55–58
slit (gap) perturbations, 70–75
split resonant modes, 61–67

coupled split modes, 63–64
local resonant split modes, 64–66
notch perturbation split modes, 66–67
patch perturbation split modes, 67

varactor-tuned microstrip ring circuit, input
impedance and frequency response,
106–109

Mode suppression:
annular ring element, regular resonant

modes, 57–58
ring filter applications, 191–193

Monolithic microwave integrated circuits
(MMIC):

asymmetrical coplanar strip hybrid-ring
couplers, 209–211

microstrip line, 2–4
reduced-size uniplanar 180º reverse-phased

hybrid-ring couplers, 223–226
voltage-tuned microstrip ring-resonator

oscillator, 334–342
Multifrequency annular slot antenna, basic

configuration, 313–314
Mutual admittance, annular ring antenna,

301–303
Mutual coupling, ring bandpass filters,

185–186
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Narrow band elliptic-function bandpass filters,
applications, 187–188

Narrow bandwidth, dual-mode, 167–171
Neumann function, ring antenna construction,

299
Non-resonant mode reactance, annular ring

antenna, 305–306
Notch perturbation:

asymmetric ring resonator circuits, 67–70
ring resonators, split modes, 66–67
split mode measurements, 149–151

Odd-mode excitation, microstrip rat-race
hybrid-ring couplers, 198–203

Odd-numbered mode:
discontinuity measurements, 146–147
electronically switchable ring resonators,

microstrip ring resonators, 130–131
One-port ring resonators:

errors in frequency modes, 32–34
transmission-line model, frequency modes,

29–32
Open circuits:

frequency measurements, linear resonators,
141–145

varactor-tuned microstrip ring circuit, input
impedance and frequency response,
106–109

Open-loop microstrip ring resonators:
calculation and experimental results, 40
equivalent lumped elements, 36–40
narrow band elliptic-function bandpass

filters, 187–188
Open-loop ring resonators, bandpass filters,

182–186
Open-stub bandstop filter, resonant

frequency, 163–164
Optoelectronics, microwave ring devices,

342–346
Ortel SL laser diode, microwave

optoelectronics applications, 344–346
Orthogonal feed lines:

dual-mode ring bandpass filters, 155–161
ring bandstop filters, 161–164
ring oscillators, 338–342

Out-of-phase coupling:
double-sided (180º) slotline ring magic-Ts,

254–258
reduced-size uniplanar magic-Ts,

262–269
uniplanar-slotline ring magic-Ts, 259–262

Packaged diodes, varactor-tuned resonator:
equivalent circuit, 101–103

parasitic effects on resonant frequency,
109–112

Parallel resonances, slow-wave bandpass
structure, 172–178

“Parametric mode,” microwave
optoelectronics applications, 346

Parasitic components, varactor-tuned
resonator:

equivalent circuit, 101–103
resonant frequency effects, 109–112

Patch perturbation split mode, ring
resonators, 67

Permittivity measurements, ring resonator
applications, 140–145

Perturbations:
notch perturbation:

asymmetric ring resonator circuits, 67–70
split mode ring resonators, 66–67

slotline ring filters, 189–191
uniplanar ring resonators, 90–93

Phase balance/imbalance:
CPW magic-Ts, 252–254
reduced-size uniplanar magic-Ts, 263–269
reduced-size uniplanar 180º reverse-phased

hybrid-ring couplers, 224–226
Piezoelectric transducer (PET):

bandpass filters, 186–187
tuned microstrip ring resonator, 124–125
voltage-controlled ring oscillators, 342–344

Pileup design, waveguide ring resonators, H-
plane waveguide ring cavity, 272–276

PIN diodes, electronically switchable ring
resonators:

basic functions, 127–128
equivalent circuit, 128–130
microstrip ring resonators, 131–134
varactor-tuned microstrip resonators,

134–138
Planar magic-T, introduction of, 241–243
Planar waveguide model, ring resonators,

12–13
PN junction:

electronically switchable ring resonators,
PIN diode equivalent circuit, 128–130

varactor-tuned resonator, 97–98
equivalent circuit, 99–103

Power division, active annular ring antenna,
314–319

Propagation constant, transmission-line ring
resonator model, transmission-line
equivalent circuit, 23–25

Q-factors:
dual-mode ring bandpass filters, 155–161
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microwave optoelectronics applications,
343–346

ring bandpass filters, 183–186
ring resonator measurement, 139, 142–145
varactor-tuned microstrip ring circuits,

112–115
waveguide ring resonators, regular resonant

modes, 279–281
Quasi-linear coupling, microstrip ring

resonators, 76–77

Radial transmission lines, annular ring
antenna, 298

Rat-race balanced ring mixers, basic
configuration, 330–333

Rat-race hydrid couplers, structure and
characteristics, 197–211

asymmetrical coplanar strip hybrid-ring
couplers, 209–211

coplanar waveguide-slotline hybrid-ring
couplers, 203–209

microstrip ring couplers, 197–203
Rectangular waveguide, ring resonators, 2–4
Reduced-size structures:

uniplanar magic-Ts, 262–269
uniplanar 180º reverse-phased hybrid-ring

couplers, structure and properties,
223–226

Reflectarrays, ring resonator applications,
322–326

Reflection coefficient, microstrip 
rat-race hybrid-ring couplers, 201–203

Regular resonant modes:
annular ring element, 55–58
waveguide ring resonators, 276–281

Rejection bandwith, ring filter applications,
191–193

Relative permittivity, magnetic-wall ring
resonator, 12–13

Resonance splitting:
microstrip ring resonators, slit (gap)

perturbations, 73–75
symmetric ring resonator, notch

perturbation, 68–70
Resonant frequencies. See also Frequency

solution
annular ring resonator, regular resonant

modes, 56–58
coupling gap, ring resonators, 79–81
dual-mode ring bandpass filters, 155–161
electronically switchable ring resonators:

microstrip ring resonators, 130–131,
133–134

PIN diode and shift in, 128

enhanced coupling, 82–84
microwave optoelectronics applications,

342–346
ring bandstop filters, 163–164

resonator mode chart, 11
slotline ring antennas, 309–314
slow-wave bandpass structure, 171–178
transmission-line ring resonator model,

28–29
transmission-line ring resonator model,

input impedance, 26–27
varactor-tuned resonator:

package parasitics and, 109–112
varactor-tuned microstrip ring circuits,

114–115
Resonant modes:

ring resonators:
forced resonant modes, 58–61
regular resonant modes, 57–58
split resonant modes, 61–67

coupled split modes, 63–64
local resonant split modes, 64–66
notch perturbation split modes, 66–67
patch perturbation split modes, 67

slotline ring filters, 189–191
waveguide ring filters, decoupled resonant

modes, 287–288
waveguide ring resonators:

forced resonant modes, 283–285
regular resonant modes, 277–281
split resonant modes, 281–283

Return loss, reduced-size uniplanar 180º
reverse-phased hybrid-ring couplers,
224–226

Reverse-biased diodes, electronically
switchable ring resonators:

microstrip ring resonators, 131–134
PIN diode equivalent circuit, 129–130
varactor-tuned microstrip resonators,

134–138
Reverse-phase back-to-back baluns, ring

couplers, 211–217
Reverse-phase (180º) CPW-slotline T-

junctions, 243–244
Reverse-phase hybrid-ring couplers, structure

and properties, 217–227
asymmetrical coplanar strip, 226–227
CPW-slotline couplers, 217–223
reduced-size uniplanar couplers, 223–226

Ring antennas:
active antenna ring circuits, 314–319
basic properties, 297–298
circuit model, 298–307

approximations and fields, 298–299
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Ring antennas (Continued)
computer simulation, 306–307
input impedance:

dominant formulation for, 303–305
overall impedance, 306

reactive terms, 305–306
wall admittance calculation, 300–303

circular polarization and dual-frequency
configurations, 307–308

slotline structures, 308–314
Ring bandpass filters, two transmission zeros,

179–186
Ring bandstop filters, applications, 161–164
Ring circuits, active antennas, 314–319
Ring couplers:

basic principles, 197
ninety-degree branch-line couplers, 227–237

asymmetrical coplanar strip branch-line
couplers, 233–237

CPW-slotline branch-line couplers,
231–233

microstrip branch-line couplers, 227–231
rat-race hybrid couplers, 197–211

asymmetrical coplanar strip hybrid-ring
couplers, 209–211

coplanar waveguide-slotline hybrid-ring
couplers, 203–209

microstrip ring couplers, 197–203
reverse-phase back-to-back baluns, 211–217
reverse-phase hybrid-ring couplers, 217–227

asymmetrical coplanar strip, 226–227
CPW-slotline couplers, 217–223
reduced-size uniplanar couplers,

223–226
Ring equivalent circuit:

calculated and experimental results, 40
closed- and open-loop microstrip

resonators, equivalent lumped
elements, 36–40

transmission-line ring resonator model,
input impedance, 25–27

Ring mixers:
basic configurations, rat-race balanced

mixers, 330–333
slotline ring quasi-optical mixers, 333–334

Ring oscillators, basic configuration, 334–342
Ring resonators:

distributed transmission-line model, 40–51
curvature effect, 44–45
distributed-circuit model, 45–51
microstrip dispersion, 41–43

equivalent circuit, mode, and frequency,
35–40

calculated and experimental results, 40

closed- and open-loop microstrip
resonators, equivalent lumped
elements, 36–40

filter applications:
basic principles, 153
compact, low insertion loss, sharp

rejection, and wideband bandpass
filters, 164–171

dual-mode ring bandpass filters, 153–161
mode suppression, 191–193
narrow-band elliptic-function bandpass

filters, 187–188
piezoelectric transducer-tuned bandpass

filters, 186–187
ring bandstop filters, 161–164
slotline ring filters, 188–191
slow-wave bandpass filters, 171–178
two transmission zeros bandpass filters,

179–186
magnetic-wall model, 5–6

degenerate modes, 9–10
field analyses, 7–9
improvements, 11–13
resonator mode chart, 11
rigorous solution, 14–16
simplified eigenequation, 13

measurement applications:
discontinuity measurements, 145–147
dispersion, dielectric constant, and Q-

factor measurements, 139–145
forced modes, 147–149
research background, 139
split modes, 149–151

reflectarray applications, 322–326
research background and applications, 1–3
transmission-line model:

basic components, 16
coupling gap equivalent circuit, 16–22
dual mode, 34–35
frequency modes, 32
frequency solution, 27–29
mode verification, 29
one-port ring circuit errors, 32–34
ring equivalent circuit and input

impedance, 25–27
transmission-line equivalent circuit,

22–25
transmission lines and waveguides, 2–4
waveguide ring resonators:

basic properties, 271–272
E- and H-plane configuration, 272–276
forced resonant modes, 283–285
regular resonant modes, 276–281
split resonant modes, 281–283
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Ring slow-wave bandpass filters, applications,
171–178

Root-finding problem, transmission-line ring
resonator model, frequency solution,
27–29

Self-admittances, annular ring antenna,
300–303

Self-conductance, annular ring antenna, wall
admittance calculation, 302–303

Self-reaction, magnetic-wall ring resonator,
14–16

Series resonances, slow-wave bandpass
structure, 172–178

Sharp cutoff characteristic, wideband
bandpass filter, 166–171

Shunt capacitance, transmission-line ring
resonator model, coupling gap
equivalent circuit, 21–22

Side coupling, microstrip ring resonators, 77
Silver epoxy, varactor-tuned microstrip ring

circuits, 113–115
Simplified eigenequation, magnetic-wall ring

resonator, 13
Single-balanced ring mixer, basic

configuration, 331–333
Single-cavity dual-mode filters, waveguide

ring filters, 289–292
Single-mode excitation, dual-mode ring

bandpass filters, 155–161
Slit (gap) perturbations, microstrip ring

resonator, 70–75
Slotline structures:

ring antennas, 308–314
active antenna structure, 316–318
quasi-optical mixers, 333–334

ring resonators:
coplanar waveguide-slotline hybrid-ring

couplers, 203–209
branch-line couplers, 231–233
180º reverse-phase hybrid-ring

couplers, 217–223
coupling methods, 85–90
filter applications, 188–191
reverse-phase back-to-back baluns,

212–217
varactor-tuned uniplanar ring resonators,

117–123
uniplanar-slotline hybrid-ring coupler:

branch-line couplers, 232–234
coplanar waveguide-slotline hybrid-ring

couplers, 203–209
uniplanar-slotline ring magic-Ts,

258–262

Slot ring antenna:
active antenna-coupled slot antenna,

316–318
basic structure, 297

Slow-wave bandpass filters, microstrip line,
171–178

Smith chart, annular ring element, regular
resonant modes, 57–58

S-parameters:
distributed-circuit ring resonator model,

50–51
electronically switchable ring 

resonators, microstrip ring 
resonators, 130–131

varactor tuned resonator, microstrip ring
circuits, 112–115

wideband bandpass filter, 169–171
Split resonant modes:

ring resonators, 61–67
coupled split modes, 63–64
dispersion measurements, 149–151
local resonant split modes, 64–66
notch perturbation split modes, 66–67
patch perturbation split modes, 67

waveguide ring resonators, 281–283
Split-ring resonators, metamaterials,

347–349
Square loops, frequency-selective surfaces

(FSSs), 319–322
Square ring resonators:

errors in frequency modes, 32–34
slow-wave bandpass structure, 174–178
transmission-line model:

dual modes, 34–35
frequency modes, 29–32

Standing wave calculations:
forced resonant modes:

annular ring, 59–61
ring resonator measurements, 148–149

local resonant split mode, 65–66
transmission-line ring resonator model,

frequency modes, 31–32
Stationary solution, magnetic-wall ring

resonator, 14–16
Stopband bandwidth:

slow-wave bandpass structure, 171–178
wideband bandpass filter, 169–171

Substrate thickness, annular ring antenna,
298

Superposition principle, transmission-line ring
resonator model, coupling gap
equivalent circuit, 20–22

Surface-roughness resistance, distributed-
circuit ring resonator model, 48–51
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Switch/filter circuits, electronically switchable
ring resonators:

microstrip ring resonators, 132–134
varactor-tuned microstrip resonators,

135–138
Symmetrical discontinuity, ring resonator

measurements, 146–147
Symmetric excitation:

transmission-line ring resonator 
model, coupling gap equivalent 
circuit, 17–22

waveguide ring resonators, regular resonant
modes, 276–281

Symmetry plan, CPW magic-Ts, 246–254

Tapered-balun structure, reverse-phase back-
to-back baluns, 211–217

Tapered-line magic-T, introduction of,
241–243

Tapping positions, ring bandpass filters,
180–186

Through-reflect-line (TRL) calibration,
annular ring, regular resonant modes,
57–58

T-junction effect:
asymmetric coplanar strip (ACPS) branch-

line coupler, 236–237
coplanar waveguide-slotline hybrid-ring

couplers, 204–209
ring bandstop filters, 164

T-network parameters, transmission-line ring
resonator model, transmission-line
equivalent circuit, 23–27

Transmission coefficients, microstrip rat-race
hybrid-ring couplers, 201–203

Transmission-line models:
annular ring antenna, input impedance

formulation, 303–305
basic components, 16
closed- and open-loop microstrip ring

resonators, equivalent lumped-
elements, 38–40

coupling gap, equivalent circuit, 16–22
CPW magic-Ts, 248–254
distributed transmission-line model, 40–51

curvature effect, 44–45
distributed-circuit model, 45–51
microstrip dispersion, 41–43

double-sided (180º) slotline ring magic-Ts,
256–258

dual mode, 34–35
ring bandpass filters, 160–161

equivalent circuit and input impedance,
25–27

frequency modes, 32
frequency solution, 27–29
mode verification, 29
one-port ring circuit errors, 32–34
ring filter applications, mode suppression,

191–193
ring resonators, 6–7
slow-wave bandpass structure, 173–178
transmission-line equivalent circuit,

22–25
varactor-tuned resonator, 99

microstrip ring circuits, 112–115
uniplanar ring resonators, 118–123

Transmission zeros. See Two transmission
zeros

Transverse electric (TE) modes, ring
resonator models, resonator mode
chart, 11

Transverse magnetic (TM) field:
magnetic-wall ring resonator model, field

analyses, 8–9
ring antenna construction, 299

Trial current distribution, magnetic-wall ring
resonator model, rigorous solutions,
15–16

Tunable-switchable waveguide ring resonator,
forced resonant modes, 283–285

Tuning range:
piezoelectric transducer-tuned microstrip

ring resonator, bandpass filters,
186–187

varactor tuned resonator, parasitic effects,
109–112

Tuning stubs:
dual-mode ring bandpass filters, 154–161
slotline ring filters, 189–191
wideband bandpass filter, 164–171

Turn ratio, coplanar waveguide-slotline
hybrid-ring couplers, 207–209

Two-cavity dual-mode filters, waveguide ring
filters, 292–295

Two-component waves, microstrip rat-race
hybrid-ring couplers, 198–203

Two-port circuits, microstrip rat-race hybrid-
ring couplers, 198–203

Two transmission zeros:
dual-mode ring bandpass filters, 153–161
narrow band elliptic-function bandpass

filters, 188
ring bandpass filters, 179–186
wideband bandpass filter, 168–171

Undercoupled conditions, ring bandpass
filters, 183–186
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Uniplanar structures:
coplanar waveguide (CPW)-slotline 180º

reverse-phase hybrid-ring couplers,
217–223

coupling methods, 85–90
CPW magic-Ts, 244–254
perturbations, 90–93
reduced-size uniplanar magic-Ts, 262–269
reduced-size uniplanar 180º reverse-phased

hybrid-ring couplers, 223–226
slotline hybrid-ring coupler:

branch-line couplers, 233
coplanar waveguide-slotline hybrid-ring

couplers, 203–209
slotline ring magic-Ts, 258–262
varactor-tuned resonators, 117–123

Unit amplitude, microstrip rat-race hybrid-
ring couplers, 198–203

Unit cells, frequency-selective surfaces (FSSs),
319–322

Varactor-tuned resonators:
basic principles, 97–98
double varactor-tuned microstrip ring

circuit, 115–117
electronically switchable ring resonators:

microstrip ring resonators, 134–138
PIN diode equivalent circuit, 129–130

equivalent circuit, 99–103
microstrip ring circuit:

electronically switchable resonators,
130–131

experimental results, 112–115
input impedance and frequency response,

103–109
resonant frequency, package parasitic

effects, 109–112
simple analysis, 98–99
uniplanar ring resonators, 117–123

waveguide ring resonators, forced resonant
modes, 285

Velocity measurements, ring resonator
applications, 141–145

Voltage-controlled oscillators (VCOs), dual-
mode ring resonators, 336–342

Voltage derivatives:
ring antenna construction, 299
transmission-line ring resonator model,

frequency modes, 31–32
Voltage-tuned microstrip ring-resonator

oscillator, basic configuration, 334–342

Wall admittance, ring antenna calculation,
300–303

Waveguide ring filters:
basic properties, 271–272
decoupled resonant modes, 287–288
dual-mode filters, 285–287

single-cavity dual-mode filters, 289–292
two-cavity dual-mode filters, 292–295

Waveguide ring resonators. See also Coplanar
waveguide (CPW) resonators

basic properties, 271–272
E- and H-plane configuration, 272–276
forced resonant modes, 283–285
regular resonant modes, 276–281
split resonant modes, 281–283

Wideband bandpass filter, applications,
164–171

Width/ring radius, ring resonator models,
resonator mode chart, 11

Y-parameters:
ring bandpass filters, 180–186
wideband bandpass filter, 169–171

Z-parameters, ring resonator discontinuity
measurements, 145–147
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